Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Ньютона среда линейно-вязкая

Ньютона среда линейно-вязкая 172  [c.348]

Линейно-вязкая среда Ньютона. Третьей простой реологической моделью является линейно-вязкая среда Ньютона (рис. 69), изображающая свойство вязкости. Сопротивление деформации 172  [c.172]

Формулы (146), (147), (151) имеют важное значение в теории упругости, гидродинамике и других разделах механики сплошных сред. В теории упругости тензор напряжений Р заменяется линейной функцией тензора деформаций [обобщенный закон Гука (1635—1703)], в гидродинамике вязкой жидкости — также линейной функцией тензора скоростей деформаций (обобщенный закон Ньютона). Покажем это на простом примере вязкой несжимаемой жидкости.  [c.255]


В основе М. лежат три закона Ньютона. Первые два справедливы по отношению к т, н. инерциальной системе отсчёта. Второй закон даёт осн. ур-ния для решения задач динамики точки, а вместе с третьим — для решения задач динамики системы материальных точек. В М. сплошной среды, кроме законов Ньютона, используются закона, отражающие свойства данной среды и устанавливающие для неё связь между тензором напряжений и тензорами деформаций или скоростей деформаций. Таковы Дука закон для линейно-упругого тела и закон Ньютона для вязкой жидкости (см. Вязкость). О законах, к-рым подчиняются др. среды, см. в ст. Пластичности теория. Реология.  [c.127]

Книга содержит систематическое изложение теоретической механики и основ механики сплошных сред. Большое внимание уделено фундаментальным понятиям и законам механики Ньютона — Галилея, законам изменения и сохранения импульса, кинетического момента и энергии, уравнениям Лагранжа, Гамильтона и Гамильтона — Якоби для класса обобщенно-потенциальных сил, а также законам механики сплошных сред, на единой основе которых рассматриваются идеальная и вязкая жидкости, упругое тело. В книге подробно излагаются-, задача двух тел и классическая теория рассеяния, законы изменения импульса, кинетического момента и энергии относительно неинерциальных систем отсчета, теория линейных колебаний систем под действием потенциальных, гироскопических и диссипативных сил, метод Крылова — Боголюбова для слабо нелинейных систем, методы усреднения уравнений движения. Книга содержит большое количество примеров интересных для физиков, в частности рассматриваются примеры на движения зарядов в заданных электромагнитных полях, задачи на рассеяние частиц, колебания молекул, нелинейные колебания, колебания систем с медленно меняющимися параметрами, примеры из магнитогидродинамики. Книга рассчитана на студентов и аспирантов физических специальностей.  [c.2]

Для неравновесных условий нагружения могут быть выделены нестационарные (неустановившиеся) и стационарные (установившиеся) периоды процесса, в которых соответственно соотношение напряжение а — деформация е зависит от времени нагружения и не зависит от него, что иллюстрируется ниже на примере изотермического нагружения при малых деформациях простейших линейных упруговязких и вязкоупругих систем. Механическое поведение этих систем при однородном растяжении может быть моделировано комбинацией чисто упругих (пружин) и вязких (поршней в вязкой среде) элементов, подчиняющихся законам Гука и Ньютона для одноосного нагружения и представленных на рис. 1.3.1. Более подробные сведения о реакции различных вариантов моделей на внешние условия нагружения можно найти в монографиях [4, 24, 26, 68]. Уравнения состояния таких систем определяются из следующих условий  [c.32]


Для изотропной вязкой среды тензор напряжений в первом приближении можно считать линейной функцией скорости деформации. В соответствии с законом Ньютона — Коши — Пуассона этот тензор имеет вид  [c.166]

Линейное трение. Наряду с использованием нелинейных характеристик было выполнено моделировапие с линейным (вязким) трением. Закон пропорциональности силы трения скорости относительного движения был установлен Ньютоном для трения жидких тел. Эта зависимость в 1[астоящее время находит применение при учете сопротивления телу, движуш,емуся в среде при малых числах Рейнольдса. Однако в силу простоты учета трения по этой зависимости иногда независимо от природы трения и истинных закономерностей (часто неизвестных) грубо, в первом приближении, принимают трение изменяющимся по линейному закону.  [c.179]

К описанию механического поведения непрерывной среды применимы все соотношения, рассмотренные в разделах 1.2.1—1.2.4. Вместе с тем реальные среды по-разному реагируют на одно и то же внешнее механическое воздействие. Эта реакция, или механическое поведение среды, определяется ее молекулярной структурой и состоянием при заданных внешних условиях. Обобщенные характеристики конкретных сред носят название уравнений состояния [16] ( onstitutive equations) [7] или определяющих уравнений входящие в них константы являются характеристиками механических свойств среды. Примерами простейших уравнений состояния идеализированных сред служат изотермические линейные законы деформирования упругих твердых тел (закон Гука) и вязких жидкостей (закон Ньютона).  [c.23]


Смотреть страницы где упоминается термин Ньютона среда линейно-вязкая : [c.150]    [c.415]   
Теория пластичности (1987) -- [ c.172 ]



ПОИСК



Ньютон

Среда вязкая



© 2025 Mash-xxl.info Реклама на сайте