Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Кремний металлический

Крутильный маятник 150 Кремний металлический 309  [c.476]

D) Неверно. Направленность связей характерна для ковалентных кристаллов, например для углерода, кремния. Металлическая связь ненаправленная.  [c.18]

В качестве безалмазных правящих инструментов используют круги из карбида кремния, металлические звездочки, гофрированные и гладкие диски, стальные и твердосплавные ролики малогабаритные твердосплавные диски.  [c.356]


Во всех разновидностях мартеновского процесса кремний металлической шихты в результате его большого сродства к кислороду интенсивно окисляется в период плавления кислородом печной атмосферы и закисью железа шлака по реакциям  [c.226]

Как было отмечено выше (см. разд. II, гл. 2, 3), в любых сталеплавильных шлаках кремнезем является одним из важнейших компонентов. Кремнезем, получающийся в результате окисления кремния в ванне, активнее вносимого в готовом виде и ускоряет процесс формирования шлака. В этом смысле кремний металлической шихты также оказывает положительное влияние на ход плавки.  [c.191]

Учитывая роль кремния металлической шихты (чугуна) в образовании шлака и принимая некоторые упрощения (в шлаке содержится 8102, образующейся только в результате окисления кремния металла, основность шлака 2,0—2,5 при содержании кремнезема около 18— 20%, масса металла на первой ступени рафинирования не изменяется и т.д.), можно получить следующую простую формулу для определения возможной степени поглощения вредных примесей в первой стадии рафинирования металла, проводимой в реакторе обычного типа (в режиме полного смешения)  [c.363]

На свойства железоуглеродистых сплавов влияет наличие в них постоянных примесей (вредных — серы, фосфора, кислорода, азота, водорода полезных — кремния, марганца и др.). Эти примеси могут попадать в сплав из природных соединений (руд), например, сера и фосфор из металлического лома — хром, никель и др. в процессе раскисления — кремний и марганец.  [c.14]

Установлено, что при увеличении содержания углерода прочность и твердость железа увеличиваются, то есть несмотря на то, что в стали содержится большое количество металлических и неметаллических элементов марганец, кремний, фосфор, сера, хром, никель, медь, азот, кислород или водород, решающую роль в превращении железа в сталь играет именно углерод [37]. Например, для стали У7А (содержание углерода 0,63- 0,73 %) предел прочности при растяжении 650 МПа, относительное удлинение 18 %, в отожженном состоянии НВ 180 [15].  [c.66]

Установлено, что при увеличении содержания углерода прочность и твердость железа увеличиваются, то есть несмотря ка то, что в стали содержится большое количество металлических и неметаллических элементов марганец, кремний, фосфор, сера, хром, никель, медь, азот, кислород или во-  [c.240]

Излучение света твердыми телами, находящимися в возбужденном состоянии, обнаружено улсе давно. Так, в 1907 г. Раунд наблюдал испускание света карбидом кремния, обусловленное рекомбинацией электронов и дырок. Свечение в точке контакта металлического острия с кристаллом карбида кремния обнаружил советский физик О. В. Лосев (1923) при исследовании свойств кристаллических детекторов.  [c.313]


В качестве абразивного материала рекомендуется использовать электрокорунд марок 14А, 23А и 25А по ОСТ 2-115-71 или карбид кремния марок М10, М14 по ГОСТ 3647-71, или металлическую дробь ДЧК, дек номерами 01, 02, 03, 05 по ГОСТ 11944-84.  [c.441]

Жидкотекучесть — способность жидкого металла полностью заполнять полости литейной формы и четко воспроизводить очертания отливки. Жидкотекучесть зависит от химического состава, температуры заливаемого в форму сплава и теплопроводности материала формы. Фосфор, кремний и углерод улучшают ее, а сера ухудшает. Серый чугун содержит углерода и кремния больше, чем сталь, и поэтому обладает лучшей жидкотекучестью. Повышение температуры жидкого металла улучшает жидкотекучесть, и чем выше его перегрев, тем более тонкостенную отливку можно получить. Увеличение теплопроводности материала формы снижает жидкотекучесть. Так, песчаная форма отводит теплоту медленнее и расплавленный металл заполняет ее лучше, чем металлическую форму, которая интенсивно охлаждает расплав. Минимально воз-  [c.51]

Если приложить внешнее давление, то графитизация может быть прекращена (Po = Pt г>г=0). Такое влияние внешнего давления можно использовать для получения графита шаровидной формы в чугуне с большим значением углеродного эквивалента. Для этого надо подавить процесс графитизации во время кристаллизации отливок, а затем произвести их кратковременный отжиг, длительность которого будет тем меньше, чем больше содержание углерода и кремния в чугуне. При этом внешнее давление при кристаллизации расплава должно быть равным или несколько больше того давления, которое возникает в металлической матрице в связи с ростом включений графита [49].  [c.36]

Чугун, стали и сплавы. На основе смеси порошков хрома, никеля, кремния, бора, а также на основе карбидов и боридов хрома с силикатной или металлической связкой, получены покрытия, обеспечивающие эффективную защиту стали марки Ст. 3 и чугуна от окисления в атмосфере воздуха при температуре 800—900° С в течение нескольких сотен часов. Покрытия характеризуются высокой твердостью. Термостойкость покрытий составляет 30 —40 циклов теплосмен при колебаниях  [c.6]

В работах [1,2] описан вакуумный метод силицирования тугоплавких металлов в порошкообразном кремнии. Образование силицидов металла происходит в результате соприкосновения металлической поверхности с твердой или паровой фазой кремния. Замечено, что вакуумное силицирование титана в порошке кремния протекает иначе, чем тугоплавких металлов — Мо, Д , Nb и др.  [c.39]

Таким образом, данные работы [4] близки к результатам Карсанова и др. [164], получивших при восстановлении окиси хрома кристаллическим кремнием металлический хром с содержанием углерода 0,09—0,22%-  [c.151]

Расход электродов на 1 т продукта составляет 92 кг при выплавке кремния металлического, 107 кг силикоалюмнння,  [c.346]

По хар-ру хим. связи кристаллы делят на четыре осн. группы — ионные кристаллы (напр., КаС1), ковалентные (наир., алмаз, кремний), металлические [металлы п интерметаллич. соединения) и молекулярные кристаллы (напр., нафталин). В ионных кристаллах эл-ны переходят от атомов металлов, к-рые становятся положит.  [c.327]

Главный процесс, формирующий структуру чугуна, — процесс графитизации (выделение углерода в структурно-свободном виде), так как от него зависит не только количество, форма и рас-нредолоппе графита в структуре, но и вид металлической основы (матрицы) чугуна. В зависимости от степени графитизации матрица может быть перлитно-цементитной (П + Ц), перлитной (II), перлитно-ферритной (П Ф) и ферритной (Ф). Цементит перлита называют эвтектоидным, остальной цементит — структурно-сво-бодным. Некоторые элементы, вводимые в чугун, способствуют графитизации, другие — препятствуют. На рис. 148 знаком — обозначена графитизирующая способность рассматриваемых элементов, знаком 1- задерживающее процесс графитизации действие (отбеливание). Как следует из приведенной схемы, нанболь-шее графитнзирующее действие оказывают углерод и кремний, наименьшее — кобальт и медь.  [c.322]

Иногда, правда очень редко, в металлических сплавах образуются карбиды бора, алюминия, кремния и других элементов, по приведенной классификации относящихся к некарбидообразующим элементам. Дело в том, что карбиды Е54С, Alj j и т. д. совершенно отличны от рассматриваемых карбидов, Это соединения с ковалентой связью, не обладающие мрта,1]лическими свойствами.  [c.353]


Усы получают также из неметаллических материалов (графитд, окиси бериллия, карбида кремния, окиси алюминия, окиси магния [12]). Прочность многих керамических усов значительно превышает прочность металлических усов (рис. 84). Упругое удлинение керамических усов 1,5—6% модуль нормальной упругости = (30 -н 50) 10 кгс/мм . Исключительно высокий модуль упругости имеют графитные усы ( = 100-10 кгс/мм ). V.,.  [c.173]

Распределение кремния между шлаком и металлом. Кремний, входящий в состав флюсов и электродных покрытий в виде кремнезема S1O2, в составе шлака образует комплексные ионы, строение которых зависит, как это указывалось ранее, от количества ионов 0 , возникших при диссоциации металлических оксидов. Однако кремний восстанавливается на границе металл — шлак в высокотемпературной зоне сварки. Несмотря на близкую с МпО термодинамическую устойчивость, кремний восстанавливается в относительно малых количествах, что свидетельствует о его малой активности в шлаке.  [c.364]

Реактивное катодное распыление представляет процесс, в котором происходит вырывание атомов или частиц металлической мишени под действием бомбардировки ионами относительно высоких энергий в присутствии кислорода. Кислород реагирует с частицами напыляемого металла, образуя окислы. Синклэром [68] таким способом были получены пленки из двуо киси кремния, окиси алюминия и из алю. мосиликатов. Давление при этом составляло 332,5-10- Па, а напряжение— 1800 В. О получении пленочного покрытия из двуокиси титана с помощью реактивного катодного распыления сообщается Хейтманом [69].  [c.107]

Для увеличения степени черноты обмуровки топочной камеры могут использоваться покрытия на основе алю-мофосфатных связующих с наполнителями из карбида кремния или покрытия, полученные непосредственным нанесением с помощью плазменных распылителей тита-ната кальция. Кроме того, покрытие может быть нанесено плазменным методом на металлический щит толщиной 2—3 мм. Такой щит крепится с тыльной стороны экранных труб или непосредственно с помощью болтов к футеровке. Щиты, кроме того, снижают присос воздуха в газовый тракт котла, увеличивая тем самым его к. п. д. Кроме того, применение покрытий с высоким значением степени черноты позволяет уменьшить эрозию материалов футеровок [174].  [c.216]

Транзистор МДП — полевой транзистор с изолированным затвором, состоящий из трех слоев металлического (М), диалектричесКогО (Д) и полупроводникового (П) в качестве диэлектрика обычно используют пленку окисла кремния (МОП — транзистор) [9].  [c.158]

В неорганической химии молекулы являются типичной формой существования химического соединения в паро- и газообразном состоянии. Поэтому во всех рассмотренных структурах нельзя выделить обособленные молекулы в кристаллической рещетке. Такие кристаллические рещетки, в которых отсутствуют дискретные молекулы, называются координационными. К ним относятся ионные, металлические и атомные решетки. К ионным принадлежит решетка ЫаС1, к металлическим — решетка натрия, к атомным — решетки кремния и сульфида цинка. На,рис. 10 для сравнения приведена элементарная ячейка молекулярной решетки кристалла йода.  [c.16]

Серый чугун при малом сопротивлении растяжению имеет достаточно высокое сопротивление сжатию. В химический состав серого чугуна наряду с углеродом (3,2-3,5%) входят кремний (1,9-2,5%), марганец (0,5-0,8%) и фосфор (0,1-0,3%). Спруктура металлической основы серых чугунов зависит от состава и, прежде всего, от количества углерода и кремния. С увеличением С и Si увеличиваются степень графитизании и склонность к образованию ферритной структуры металлической основы. Это ведет к разупрочнению чугуна без повышения пластичности. Лучшими прочностными и триботехническими свойствами среди серых чугунов обладают перлитные серые чугун (см. табл. 1.4)  [c.19]

Влияние контакта с твердой охлаждаемой металлической поверхностью на чистоту расплава. Чистота материалов, плавящихся в контакте с поверхностью охлаждаемого твердого металла, исследовалась экспериментально в лабораторных условиях при зонной очистке металлов и полупроводников в металлических водоохлаждаемых контейнерах, а также контролировалась в производственных условиях при эксплуатации индукционных печей с холодным тиглем для плавки металла в промьшшенности. По данным Х.Ф. Стирлинга и Б.В. Варрена, при плавке кремния и германия в охлаждаемой серебряной лодочке загрязнений расплава серебром не обнаруживается даже с помощью радиохимических методов анализа [15]. При использовании медных тиглей в промьпиленной практике загрязнений расплава медью, выхо-  [c.11]

Работа проводилась в направлении изменения стеклосвязки и введения различных металлических наполнителей. Была опробована серия щелочных, бесщелочных и малощелочных стеклообразных связок (см. таблицу) в сочетании с порошками никеля, хрома, нихрома, железа, алюминия, кремния. Шихты готовились из мелкодисперсных порошков металла и эмали (связки), проходящих через сито 10 000 отв/см . Покрытия наносились на стальные образцы (Ст. 3) методом эмалирования в атмосфере аргона при различных температурах.  [c.253]

В настоящей работе рассматривается вопрос об эффективности тонких пленок вязких стеклоэмалевых расплавов в качестве средства защиты сталей от окисления при технологических нагревах. Умеренность температур нагрева (650— 950° С) и продолжительность процесса (2—4 ч) позволяют использовать для защиты тонкие пленки вязких расплавов на основе борного ангидрида. Введение оксидов, например дйоксида кремния в количестве И и 22 мол. %, повышает вязкость расплава при температуре 1000° С соответственно до 10—100 Па-с [1], достаточной для удержания расплава на металлической поверхности.  [c.168]


Смотреть страницы где упоминается термин Кремний металлический : [c.282]    [c.74]    [c.308]    [c.308]    [c.80]    [c.308]    [c.114]    [c.262]    [c.238]    [c.321]    [c.182]    [c.32]    [c.396]    [c.73]    [c.103]    [c.81]    [c.46]    [c.84]    [c.111]   
Металлургия и материаловедение (1982) -- [ c.309 ]



ПОИСК



Кремний



© 2025 Mash-xxl.info Реклама на сайте