Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Электрохимическая коррозия почвенная

Для сосудов, устанавливаемых в грунте, большую проблему составляет борьба с подземной (почвенной) коррозией. Эта коррозия определяется агрессивностью грунта и электрохимической коррозией. Почвенная коррозия возрастает при наличии блуждающих токов.  [c.371]

Коррозионностойкими (нержавеющими) называют стали, обладающие стойкостью против электрохимической коррозии (атмосферной, почвенной, щелочной, кислотной, солевой,  [c.262]


Почвенная коррозия протекает по одинаковому механизму с электрохимической коррозией металлов в растворе и в атмосфере, однако доступ кислорода различен в растворе он определяется условиями перемешивания, в атмосфере толщиной пленки влаги, а в почве воздухопроницаемостью (рис. 14) почвы.  [c.44]

Подземная коррозия тоже протекает по механизму, включающему электрохимические элементы. Почвенная влага играет роль электролита, и обычно протекают следующие электродные реакции, например на стали  [c.50]

Подземная, или почвенная, коррозия относится к разновидностям электрохимической коррозии. В основном она наблюдается у нефтяных, газовых и водяных подземных трубопроводов и кабелей, опор и других подземных сооружений.  [c.31]

В зависимости от химического состава и структуры металла, природы агрессивной среды, условий ее воздействия электрохимическую коррозию подразделяют на солевую, щелочную, кислотную, атмосферную, почвенную, контактную, биологическую, коррозию под напряжением и пр.  [c.6]

I. Коррозионностойкие (нержавеющие), обладающие стойкостью против электрохимической коррозии атмосферной, почвенной, щелочной, кислотной, солевой, в морской воде и др. Примерное назначение коррозионно-стойкой стали приведено ниже.  [c.28]

Различают химическую коррозию, протекающую при воздействии на металл газов (газовая коррозия) и неэлектролитов (нефть и ее производные), и электрохимическую коррозию, вызываемую действием электролитов кислот, щелочей и солей. К электрохимической коррозии относятся также атмосферная и почвенная коррозия.  [c.291]

В зависимости от условий, в которых идет процесс коррозии, электрохимическую коррозию называют атмосферной, морской, почвенной, кислотной, щелочной. По характеру разрушения различают равномерную и местную коррозию. Кроме этого, для различных видов местного коррозионного разрушения используют следующие понятия.  [c.473]

Электрохимическую коррозию в зависимости от условий протекания и свойств среды подразделяют на кислотную, щелочную, солевую (соответственно в растворах кислот, щелочей, солей, в расплавленных солях, на воздухе или в газе) почвенную под воздействием блуждающих токов (например, у подземных сооружений) контактную (при контакте разнородных металлов) биокоррозию (под воздействием продуктов, выделенных микроорганизмами) и т. п.  [c.360]

I г р у п п а коррозионностойкие (нержавеющие) стали, стойкие к атмосферной, почвенной, щелочной, кислотной, солевой и другим видам электрохимической коррозии  [c.95]


Подземная электрохимическая коррозия — это разрушение металла вследствие его взаимодействия с коррозионной средой (раствором почвенного электролита), при котором ионизация атомов металла и восстановление окислительной компоненты коррозионной среды протекают не в одном акте и их скорости зависят от электродного потенциала. Электрохимическая коррозия сопровождается протеканием электрического тока.  [c.197]

Взаимодействие почвенного электролита с металлом при любом виде электрохимической коррозии можно разделить на два процесса анодный и катодный (рис, 8.1).  [c.198]

Наиболее часты случаи электрохимической коррозии. К этому типу относятся процессы коррозии в атмосфере (когда на поверхности металла образуется пленка влаги), в речной, морской воде, в разнообразных водных средах (растворы кислот, солей, щелочей), широко применяемых в технике, а также коррозия подземных металлических сооружений (трубопроводов, кабелей), поскольку они контактируют с почвенной влагой и грунтовыми водами.  [c.12]

Коррозионностойкие (нержавеющие) стали, к которым относятся стали, обладающие стойкостью против электрохимической коррозии — атмосферной, почвенной, кислотной, щелочной и др.  [c.93]

В зависимости от характера агрессивной среды электрохимическая коррозия может быть структурной (вследствие неоднородности металла по структуре), атмосферной, почвенной (на металл действует почва), кислотной, щелочной, биологической (протекает в подземных условиях при участии микроорганизмов), в водных растворах солей, коррозия блуждающими токами, контактная (при контакте двух разнородных металлов).  [c.21]

Коррозия — это процесс физико-химического разрушения металла под влиянием внешней среды. По характеру процесса различают химическую и электрохимическую коррозию. В первом случае процесс окисления металла происходит при непосредственном воздействии соприкасающейся с ним среды без появления электрического тока, а во втором случае коррозия протекает в электролитах и сопровождается появлением электрического тока. В зависимости от характера агрессивной среды электрохимическая коррозия может быть атмосферной, почвенной, структурной (вследствие неоднородности металла по структуре), биологической (протекает в подземных условиях при участии микроорганизмов), щелочной, кислотной, контактной (при контакте двух разнородных металлов), коррозией, вызванной блуждающими токами или водными растворами солей. Стойкость против коррозии зависит от химического состава, структуры, состояния поверхности, напряженного состояния металла, а также химического состава, концентрации, температуры и скорости перемещения агрессивной среды по поверхности изделия. Мерой коррозионной стойкости является скорость коррозии металла в данных условиях и среде, которая выражается глубиной коррозии в миллиметрах в год или в потере массы в граммах за час на 1 м поверхности металла.  [c.20]

Коррозионностойкой (нержавеющей) называют сталь, обладающую высоким сопротивлением электрохимической коррозии (атмосферной, почвенной, кислотной, щелочной, солевой, морской и др.).  [c.9]

Присоединение сильного анода к корродирующей системе (например, к двухэлектродному или многоэлектродному короткозамкнутому гальваническому элементу) оказывает защитное действие на коррозию системы, вызывает торможение работы коррозионных микроэлементов вследствие внешней катодной поляризации. Такое защитное действие присоединенного анода получило название протекторной защиты, а присоединенный электрод называется протектором. Уменьшение скорости электрохимической коррозии может быть достигнуто также при катодной поляризации металла приложенным извне током. Электрохимическая защита (протекторная, приложенная извне током) используется при защите от почвенной коррозии подземных трубопроводов и других сооружений, от коррозии металлов в морской воде и т. п.  [c.35]


Почвенная коррозия по своей природе также представляет разновидность электрохимической коррозии.  [c.209]

Электрохимическая коррозия возникает при соприкосновении металла с жидкостью, проводящей электрический ток и называемой электролитом. Такими жидкостями могут быть кислоты, щелочи, растворы солей, почвенная вода и пр.  [c.32]

Высоколегированные стали и сплавы (ГОСТ 5632—61) делятся на три основные группы коррозионностойкие (нержавеющие), жаростойкие и жаропрочные. В книге рассматриваются только нержавеющие стали аустенитного класса, обладающие стойкостью против электрохимической коррозии (атмосферной, почвенной, щелочной, кислотной, солевой, морской и др.).  [c.5]

Коррозионностойкие (нержавеющие) стали обладают стойкостью против электрохимической коррозии (кислотной, щелочной, солевой, атмосферной, почвенной, морской и др.). Жаростойкие (окалиностойкие) стали и сплавы, работающие в ненагруженном или слабонагруженном состоянии, обладают стойкостью против химического разрушения поверхности в газовых средах при температурах свыше 550° С. Жаропрочные стали и сплавы обладают достаточной окалиностойкостью и определенное время могут работать в нагруженном состоянии при высоких температурах. Основной характеристикой качества этих сталей и сплавов является химический состав.  [c.270]

Основная причина почвенной коррозии — наличие воды. Даже при минимальной влажности почва становится ионным проводником электрического тока, т.е. представляет собой электролит. К почвенной коррозии применимы основные закономерности электрохимической коррозии, справедливые для жидких электролитов. Однако электрохимический характер почвенной коррозии имеет особенности, отличающие ее от коррозии при погружении металла в электролит или от коррозии под пленкой влаги. Это связано с тем, что почва имеет сложное строение и представляет собой гетерогенную капиллярно-пористую систему. Почвы обладают водопроницаемостью и капиллярным водоперемещением, они накапливают и удерживают тепло и вместе с тем снижают испаряемость влаги. Если вода находится в порах или в виде поверхностных пленок на стенках пор, то ее связь с почвой имеет физико-механический характер. При этом влага удерживается в почве в неопределенных соотношениях. Другой вид связи — физико-химическая, при которой возникают коллоидные образования почвы. Возможна также химическая связь, которая характеризуется строго определенным молекулярным соотношением компонентов, например при образовании гидратированных химических соединений.  [c.41]

Группу коррозионностойких (нержавеющих) составляют стали, обладаюш,ие стойкостью против электрохимической коррозии (атмосферной, почвенной, щелочной, кислотной, солевой, морской и др.). К их числу относятся высокохромистые (12—30% Сг), хромоникелевые (17—207о Сг, 8—11% Ni, 0,12—0,14% С), хромомарганцовые и другие стали.  [c.18]

Примечание. Коррозионностойкими (перж веющими) сталями (сплавами) называются материалы, обладающие стойкостью против электрохимической коррозии (атмосферной, почвенной, щелочной, кислотной, солевой, морской и др.)  [c.331]

Микробиологическая коррозия (далее биокоррозия) — это процесс коррозионного разрушения металла в условиях воздействия микроорганизмов. Часто инициирование процессов электрохимической коррозии металлов связано с жизнедеятельностью бактерий и грибов. Биокоррозию можно рассматривать как самостоятельный вид коррозии наряду с такими, как морская, атмосферная, грунтовая, контактная и т. п. Однако чаще она протекает совместно о атмосферной или почвенной, в водных растворах или в неэлектролитах, инициирует и интенсиф г цирует их [9]. Идентифицирование биокоррозии, осо-бейно на ранних стадиях ее развития, возможно при проведении целенаправленных биохимических исследований.  [c.296]

В тропической атмосфере, в морской воде, при почвенной коррозии и в ряде других условий электрохимическая коррозия протекает иногда при участии микроорганизмов или продуктог, образующихся в результате их жизнедеятельности. Разрушение металла в этих условиях носит особое название — биокоррозия.  [c.7]

Это явление и положено в основу действия электрического дренирования и катодной защиты. В первом случае потенциал сооружения снижается искусственно до величины, обеспечивающей протекание блуждающих токов на всем защищаемом участке в направлении из грунта в сооружение. При катодной защите используется специальный источник тока для создания защитных блуждающих токов в земле. Таким образом борьба с коррозией подземных сооружений сводится 1) к защите сооружений от почвенной (электрохимической) коррозии, вызьшаемой неодно-  [c.186]


Смотреть страницы где упоминается термин Электрохимическая коррозия почвенная : [c.277]    [c.21]    [c.54]    [c.111]    [c.9]    [c.66]    [c.291]    [c.64]    [c.187]    [c.84]   
Металловедение и термическая обработка стали Т1 (1983) -- [ c.249 ]

Металловедение и термическая обработка стали Справочник Том1 Изд4 (1991) -- [ c.2 , c.36 , c.460 ]



ПОИСК



Коррозия почвенная

Электрохимическая коррози

Электрохимическая коррозия

Электрохимический



© 2025 Mash-xxl.info Реклама на сайте