Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Статика Сумма векторов

При решении задач статики обычно исходят из того, что рассматриваемое в задаче тело находится в покое и, значит, согласно первой аксиоме на него действует уравновешенная система внешних сил. Приступая к решению такой задачи, где на тело действует произвольная плоская система сил, мы заранее знаем, что условие равновесия, выраженное равенствами (1.33), выполняется, т. е. если произвольная плоская система сил уравновешена, то ее главный вектор равен нулю и алгебраическая сумма моментов всех сил относительно любой точки также равна нулю.  [c.43]


Точка приложения главного вектора, называемая центром давления, в общем случае не совпадающая с центром тяжести, может быть определена на основании законов статики твердого тела. Известно, что момент главного вектора системы сил равен сумме моментов составляющих сил. Если обозначить координаты центра давления Хд, г/д и 2д, то уравнения моментов относительно осей координат будут  [c.30]

Количества движения отдельных точек системы, очевидно, представляют ряд скользящих векторов ,Статика", 18), с которыми при разложении и при образовании моментов можно поступать по тем же правилам, какие мы имеем для сил в статике. Например, в случае двух измерений они могут быть заменены результирующим количеством движения системы, направленным вдоль линии, проходящей через любую выбранную точку О, и главным моментом количеств движения, представляющими сумму моментов количеств движения всех точек относительно точки О. Эти термины соответствуют главному вектору" и главному моменту в статике ( Статика, 21).v  [c.124]

Понятно, что полученные результаты, в частности теорема о проекции равнодействующей на ось, применимы не только в статике и имеют место не только для равнодействующей силы, но и для всякого вектора, представляющего собой сумму нескольких векторов. Следовательно, проекция суммы данных векторов на какую-нибудь ось равна алгебраической сумме проекций слагаемых векторов на ту же ось. Точно так же формулы (13) и (14) позволяют аналитически определить модуль и наиравление суммы любых векторных величин.  [c.60]

Геометрический способ сложения сил. Равнодействующая сходящихся сил. Решение многих задач механики связано с известной из векторной алгебры операцией сложения векторов и, в частности, сил. Изучение статики начнем с рассмотрения геометрического способа сложения сил. Величину, равную геометрической сумме сил какой-нибудь системы, будем в дальнейшем называть главным вектором этой системы сил. Как отмечалось в 3 (см. рис. 6), понятие о геометрической сумме сил не следует смешивать с понятием о равнодействующей для многих систем сил, как мы увидим в дальнейшем, равнодействующей вообще не существует, геометрическую же сум.му (главный вектор) можно вычислить для любой системы сил.  [c.25]

При решении этих задач по принципу Даламбера нужно разбить вращающееся твердое тело на элементарные материальные частицы и к каждой такой частице приложить касательную и нормальную силы инерции этой частицы. Так как, согласно принципу Даламбера, все эти силы инерции уравновешиваются заданными силами, приложенными к телу, и реакциями закрепленных точек, то в общем случае имеем шесть известных из статики уравнений равновесия (три уравнения проекций и три уравнения моментов). В эти уравнения войдут, во-первых, сумма проекций всех сил инерции на каждую из трех выбранных координатных осей, или, что то же, проекции главного вектора сил инерции на каждую из этих осей, и, во-вторых, суммы моментов всех сил инерции относительно каждой координатной оси, или, что то же, главные моменты сил инерции относительно каждой из этих осей. Если ось вращения тела примем за координатную ось г, то проекции главного вектора сил инерции на координатные оси будут равны (см., например, Курс теоретической механики И. М. Воронкова, 139)  [c.378]


Для изучения курса необходимо иметь соответствующую математическую подготовку. Во всех разделах курса, начиная со статики, широко используется векторная алгебра. Необходимо уметь вычислять проекции векторов на координатные оси, находить геометрически (построением векторного треугольника или многоугольника) и аналитически (по проекциям на координатные осп) сумму векторов, вычислять скалярное и векторное произведения двух векторов и знать свойства этих произведений, а в кинематике и динамике—дифференцировать векторы. Надо также уметь свободно пользоваться системой прямоугольных декартовых координат па плоскости и в пространстве, знать, что такое едтшчные векторы (орты) этих осей и как выражаются составляющие вектора по координатным осям с помощью ортов.  [c.3]

Инвариантами в статике называются такие величины для рассматриваемой системы сил, которые не изменяются при изменении центра приведения. Одним из инвариантов является главный вектор, так как в любом центре приведения он выражается векторной суммой системь сил. Если в одном тантре приведения О главный вектор / , а в другом он / ,, то  [c.78]

Такой выбор направления был использован ранее в гл. 1, когда выводились дифференциальные зависимости между внутреннит ми и внешними усилиями в прямолинейном стержне. Напомним, что имеются шесть соответствующих условий статики, а именно три суммы проекций всех сил на каждую из трех осей координат и три суммы моментов всех сил вокруг каждой из тех же осей равны нулю по отдельности. В первых трех уравнениях равновесия рассматриваются проекции усилий dN на соответствующие оси. Из них суммы Fy = Q n YlFz = обращаются в тождества, потому что вектор dN не имеет проекций на эти оси. Сумма же 51 = О принимает вид  [c.148]

Кроме сил в статике рассматриваются и пары сил. Пара — это совокупность двух равных параллельных противоположно направленных сил. Пара характеризуется моментом — суммой моментов ее сил относительно некоторой точки. Легко показать, что положение точки не существенно и на величину момента не влияет, поэтому момент пары является свободным вектором. Папомним, что вектор силы является вектором скользящим. В зависимости от знака момента пары на плоскости изображать пару будем изогнутой стрелкой О или . Пе путать эту стрелку с вектором пары Вектор пары перпендикулярен ее плоскости.  [c.13]


Смотреть страницы где упоминается термин Статика Сумма векторов : [c.279]    [c.109]    [c.258]    [c.19]    [c.164]    [c.41]    [c.209]   
Основной курс теоретической механики. Ч.1 (1972) -- [ c.24 ]



ПОИСК



Куб суммы

Статика

Сумма векторов



© 2025 Mash-xxl.info Реклама на сайте