Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сплавы алюминиевые — Вероятность разрушения

Для алюминиевых и титановых сплавов при использовании гипотезы о независимости коэффициента вариации предела ограниченной выносливости от базового числа циклов и уравнений кривых усталости для вероятности разрушения Р = 0,5 в виде  [c.138]

Рис.. 3. Семейство кривых усталости по параметру вероятности разрушения Р для алюминиевых сплавов. Рис.. 3. <a href="/info/401599">Семейство кривых</a> усталости по параметру <a href="/info/5832">вероятности разрушения</a> Р для алюминиевых сплавов.

При заданной деформации С-образные образцы исследуют при напряжениях, близких к пределу текучести при растяжении (ао,г). Для алюминиевых сплавов напряжение принимают равным 0,9 оо,2, а для магниевых сплавов 0,75 сго,2 (ГОСТ 9019—74). ЕсЛи количество испытываемых образцов 10 и более, то полученные данные подлежат математической обработке с построением кривых в координатах вероятность разрушения — время до разрушения по вышеуказанному ГОСТу.  [c.69]

Методом рентгеноструктурного анализа и по фигурам травления было установлено [144], что для алюминиевого сплава системы А1—Zn—Mg эти фасетки представляют собой плоскости [100]. На фасетках с хрупкими полосками часто наблюдается речной узор (рис. 106), образующийся в результате различия в уровнях поверхностей разрушения. Иногда на изломе наблюдается периодическое изменение цвета чередование темных и светлых полос (рис. 109, б). Вероятно, это связано с окисляющим воздействием среды в начальной стадии образования полоски.  [c.133]

Вышеуказанные положения относятся к усредненной четко выраженной текстуре плит и листового материала и не дают полного описания характеристик микроструктуры. В работе [243] отмечено, что при горячей обработке в области высоких температур в сплаве Ti — 6 А1 — 4V образуются пластинчатые структуры, в которых группы пластин а-фазы общей ориентации концентрируются в локализованной зоне. Такие структуры без сомнения относятся к структурам с колониями а-фазы, о которых упоминалось выше. Как было показано, такие структуры не оказывают ярко выраженного влияния на КР. Однако осторожность должна быть проявлена в случае изгиба деталей большого сечения с пластинчатой структурой. Возможно, что подобная ситуация может возникать в случае алюминиевых сплавов, в которых высотное направление наиболее опасное. Можно ожидать, что для титановых сплавов важным фактором является боковая протяженность пластин структуры а-фазы, хотя это не было исследовано подробно. Существование таких полос в структуре обусловливает, вероятно, области полосчатости, наблюдаемые на многих поверхностях разрушения (см. рис. 109, а). Если это справедливо, то небольшая боковая протяженность полосчатости указывает, что полосы имеют подобный небольшой боковой размер, поэтому такие структуры могут быть более точно определены как двояковыпуклые, а не пластинчатые.  [c.423]

Сплавы серий 2000 и 7000. Высокопрочные алюминиевые сплавы серий 2000 и 7000 склонны к коррозионному растрескиванию под напряжением в морских средах. Вероятность такого разрушения зависит от состава и режима термообработки сплава. Наибольшая восприимчивость к коррозии под напряжением наблюдается при термообработках, при-  [c.152]


Было показано, что в случае испытания сталей обычной прочности в условиях осевого нагружения масштабный эффект не имеет [места, так что статистическая теория, как теперь установлено, неприемлема. Это может быть объяснено тем, что или дефекты не дают ослабляющего эффекта (вследствие того, что каждый дефект окружен пластической зоной или из-за полного отсутствия дефектов), или же дефект критической величины, являющийся причиной разрушения, находится в каждом малом объеме материала, давая, таким образом, равную прочность при всех размерах. С другой стороны, известно, что дефекты больших размеров влияют на усталостные характеристики высокопрочных алюминиевых сплавов и, вероятно, также сверхпрочных сталей и поэтому статистический анализ их влияния, весьма вероятно, будет давать реальные результаты.  [c.55]

При испытаниях большого числа образцов может наблюдаться систематическое отклонение малых долговечностей от логарифмически нормального распределения, как это следует (рис, 3,6, а) из результатов испытания на, усталость алюминиевого сплава В95 (500. .. 600 образцов) при постоянном значении напряжения [70]. Для получения лучшего соответствия экспериментальных данных логарифмически нормальному распределению в формулу для определения плотности вероятности вводится порог чувствительности по циклам No, до которого не происходит разрушения  [c.108]

Коррозионное растрескивание алюминиевых сплавов, содержащих цинк и магний. Уже четверть века, как известно, что путем добавления цинка и магния к алюминию можно получить сплавы с очень высокими показателями прочности разработанные сплавы обычно содержат медь и марганец, а большинство новых сплавов содержит хром. Причины этого будут объяснены ниже. Возможно, что в связи с высоким сопротивлением этих материалов пластической деформации, в них часто наблюдается тенденция к межкристаллитному разрушению под воздействием напряжений, остающихся после изготовления изделия или введенных в процессе сборки. Иногда в деталях самолетов, изготовленных из сплавов старого типа, в процессе хранения или сборки возникали заметные для невооруженного глаза трещины это, естественно, вызвало общую настороженность в вопросе применения таких материалов, хотя, как правило, если в детали в первое время никаких трещин не развивалось, то и дальше она оставалась вполне пригодной. Выше уже говорилось, что вопрос о том, что произойдет — межкристаллитное разрушение или безвредное скольжение плоскостей, вероятно решается, как только напряжения (внутренние или приложенные извне) начинают действовать в металле, и, если с самого начала межкристаллитное разрушение не происходит, очень небольшой пластической деформации путем скольжения плоскостей достаточно, чтобы облегчить положение. Аргумент, приведенный на стр. 569, не относится непосредственно к сплавам системы А1—2п—Mg, но он может служить объяснением того, почему эти материалы обычно или быстро растрескиваются или не растрескиваются вообще.  [c.619]

Величина X = lg -т- 1) в уравнении (2) рассматривается как случайная, имеющая среднее значение, равное (—lg 0), и среднее квадратическое отклонение 8 Пр — квантиль нормального распределения, соответствующий вероятности разрушения Р %). В работах [3—6 и др.] приведены многочисленные экспериментальные данные, подтверждающие применимость уравнения подобия (2) для количественного описания влияния концентрации напряжений, масштабного фактора, формы сечения и вида нагружения на сопротивление усталости образцов и деталей из различных сталей, чугу-пов, алюминиевых, магниевых и титановых сплавов. Если испытания на усталость проводятся по обычной методике при количестве образцов 8—10 на всю кривую усталости, то отклонение б экспериментальных значений сг 1 от расчетных не превышает 8 % с вероятностью 95 %. При использовании статистических методов экспериментальной оценки пределов выносливости (метода лестницы , пробит -метода или построение полной Р — а — Х-диаграммы при количестве испытуемых образцов от 30 до 100 и более) аналогичное отклонение б не превышает 4 % с вероятностью 95 %.  [c.310]


Рис. 7.15. Семейство кривых усталости равной вероятности разрушения, или кривых усталости равной надежности, для алюминиевого сплава 7075-Т6. Примечание Р — вероятность разрушения, / =1—Р — надежность. (Из работы (16, стр. 117] адаптировано с разрешения John Wiley Sons, In .) Здесь и далее Од — амплитуда напряжения цикла N — число циклов до разрушения. Рис. 7.15. Семейство <a href="/info/130199">кривых усталости равной вероятности разрушения</a>, или <a href="/info/23942">кривых усталости</a> равной надежности, для <a href="/info/29899">алюминиевого сплава</a> 7075-Т6. Примечание Р — <a href="/info/5832">вероятность разрушения</a>, / =1—Р — надежность. (Из работы (16, стр. 117] адаптировано с разрешения John Wiley Sons, In .) Здесь и далее Од — <a href="/info/5817">амплитуда напряжения цикла</a> N — число циклов до разрушения.
На склонность алюминия и его сплавов к межкристаллитно-му разрушению особенно влияют примесные элементы и сегрегации в зоне границ кристаллитов сплава ф32, с. 187]. Так, небольшие добавки меди заметно повышают межкристаллитную коррозию алюминиевых сплавов. Вероятность межкристаллит-ного разрушения можно понизить соблюдением правильной технологии производства металла и выбором правильного режима термической обработки.  [c.54]

Следует отметить, что между скоростью ползучести и временем до разрушения существует зависимость, которая в ряде случаев может явиться -основой для получения важных параметрических соотношений. На рис, 17, по данным работы [3], приведены результаты испытаний алюминиевого сплава АК4-1 при, температурах 175, 200 и 250° С. Коэффициент корреляции логарифмов скорости ползучести и времени до разрушения г 0,9. На рис. 18 приведены зависимости скорости ползучести и времени до. разрушения от напряжений по пара- 1етру вероятности разрушения для сплава АК4-1 при 175° С [3].  [c.194]

Растрескивание нержавеющих сталей. Межкристаллитная коррозия нержавеющих сталей, часто наблюдаемая вблизи сварных швов и, по-видимому, связанная со слоями, обедненными хромом, вследствие выделения карбидов хрома, была описана на стр. 202. Другой характер разрушения, преимущественно транскристаллитный, встречается в тех случаях, когда напряженная нержавеющая сталь подвергается воздействию концентрированного раствора хлоридов. Этот вид разрушения не является следствием термической обработки, в результате которой твердый раствор обедняется хромом. Большинство исследователей для изучения этого явления применяют концентрированный раствор хлористого магния. В то время как в своей основе коррозионное растрескивание алюминиевых сплавов представляет собой механическое разрушение, которому способствует химическое воздействие, коррозионное растрескивание аустенитных нержавеющих сталей, по-видимому, представляет собой по существу электрохимическое растворение металла в узкой зоне роль механических напряжений в этом случае, вероятно, заключается в увеличении расстояния между атомами вблизи острия продви-  [c.623]

При длительном развитии разрушения появление дополнительных трещин весьма вероятно их обнаружение и анализ помогает установить характер разрушения, тем более, что при длительном развитии эксплуатационной трещины поверхность разрушения сильно повреждается. Траектория трещины может свидетельствовать о времени ее возникновения например, на неработавшей детали из высокопрочного алюминиевого сплава обнаруженная трещина идентифицировалась вначале как штамповочная, однако анализ ее траектории показал, что она строго следовала рискам от механической обработки, следовательно, трещина возникла либо при механической обработке, либо спу-ся какое-то время под действием внутренних остаточных напряжений.  [c.175]

Достоверность подобного электрохимического механизма межкристаллитной коррозии алюминиевых сплавов, содержащих медь, подтверждается тем, что на основе этой теории удается предсказать методы борьбы с этим опасным видом разрушения. Если бы удалось создать в системе электрод с более отрицательным потенциалом, зоны у границ зерен, вероятно, перестали бы разрушаться. Это можно, иапример, осуществить, ионизив потенциал тела зерна. Опыты подтвердили, что, если в такой сплав ввести небольшое количество магния, склонность сплава к межкристаллитной коррозии резко снижается. В этом случае коррозия концентрируется в основном на теле зерен, занимающих основную часть поверхности, и плотность тока у границ ничтожна. На аналогичном принципе и основана электрохимическая защита протекторами или плакирующими слоями, обладающими более отрицательным потенциалом.  [c.260]

Релаксация напряжений, которая сопровождает некоторые, если не все испытания при постоянной изгибающей деформации, не имеет места в испытаниях при постоянной нагрузке. В последнем случае, наоборот, напряжения возрастают, поскольку эффективное сечение испытуемого образца уменьшается за счет развития трещины. Это свидетельствует о малой вероятности того, что-зародившаяся однажды трещина приостановится. как это может происходить при испытаниях с постоянной изгибающей деформацией при начальных напряжениях, близких к пороговым. Поэтому пороговые напряжения, определяемые прн постоянной нагрузке ниже, чем при испытании по методу постоянной деформации. Некоторые результаты, полученные Бреннером и Грулом [7] для алюминиевого сплава (рис. 5.60), подтверждают это предположение. Из этих результатов также следует, что время до разрушения при одном и том же начальном напряжении меньше в случае испытаний при постоянной нагрузке, чем при постоянной деформации. Эти результаты ставят также вопрос о целесообразности выбора времени до разрушения в качестве критерия оценки  [c.314]


Фармери обнаружил, что для исследования механизма растрескивания алюминиевых сплавов, содержащих магний или медь, удобное ускорение растрескивания вызывается добавкой к хлористому натрию двууглекислой соды. Однако, поскольку эта добавка оказывает такое влияние не на все сплавы, ею нельзя пользоваться при проведении работ по оценке относительной склонности к растрескиванию разнотипных материалов. Роль бикарбоната в данном случае, вероятно, заключается в разрушении щелочи, образующейся на катоде в противном случае слабая кислотность, образующаяся на анодных участках, была бы нейтрализована этой щелочью. Поскольку накопление кислоты на анодных участках, как полагают, необходимо для развития коррозионного процесса, факторы, препятствующие ее нейтрализации, должны способствовать растрескиванию. Его роль такая же, как и двууглекислого кальция, применявшегося Портером и Хадденом (стр. 117) при получении коррозионных язв на алюминии но в случае глубокой и узкой трещины по сравнению с неглубокой язвой для предотвращения смешения анодного и катодного продуктов образование возвышения из пористого твердого тела над анодным участком не является необходимым. Поэтому ионы кальция не необходимы и цель достигается с помощью бикарбоната натрия. Принятый для испытания раствор был 0,5 я, по отношению к Na l и 0,005 , по отношению к NaH Os [19].  [c.639]

По аналогии можно бы предположить, что коррозионное растрескивание сплавов типа электрон, в которых выпадает интер металлическое соединение AlзMg4, также, вероятно, обусловлено разрушением этого соединения. Но в данном случае, поскольку алюминий в отличие от цинка (анода по отношению к алюминию) является катодной фазой пе отношению к магнию, процесс межкристаллитной коррозии не может иметь места, что на самом деле и наблюдается. Это предположение будет нами еще исследовано. Однако сейчас уже ясно, что интерметаллические соединения, выпадающие по границам зерен как упрочняющие фазы в алюминиевых сплавах, играют основную роль в межкристаллитной коррозии и коррозионном растрескивании этих сплавов. Отсюда мсжно сделать заключение, что подбор новых сплавов, устойчивых в отношении межкристаллитной коррозии и коррозионного растрескивания, должен начинаться с исследования коррозионной стойкости упрочняющих фаз.  [c.96]


Смотреть страницы где упоминается термин Сплавы алюминиевые — Вероятность разрушения : [c.197]    [c.66]    [c.475]    [c.113]    [c.102]    [c.190]    [c.337]    [c.564]   
Справочник машиностроителя Том 3 Изд.3 (1963) -- [ c.472 , c.473 ]



ПОИСК



Вероятности. Стр Вероятность

Вероятность

Вероятность разрушения

Сплавы алюминиевые — Вероятность



© 2025 Mash-xxl.info Реклама на сайте