Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Технические материалы — Коэффициент теплопроводности

Важнейшим техническим требованием к тепловой изоляции является ее малая теплопроводность. Известно, что различные тела проводят тепло с различной интенсивностью. Теплопроводность различных материалов характеризуется коэффициентом теплопроводности, обозначаемым греческой буквой X (ламбда). Он выражает собой количество тепла в ккал, которое может пройти в течение 1 ч через слой материала в I и толщиной в 1 м, если разность температур на противолежащих гранях этого слоя составляет 1° С. Размерность коэффициента теплопроводности выражается  [c.24]


Для различных веществ коэффициент теплопроводности Я различен и в общем случае зависит от структуры, плотности, влажности, давления и температуры. Все вместе взятое сильно затрудняет выбор правильного значения коэффициента теплопроводности. Поэтому при ответственных расчетах значение коэффициента теплопроводности следует определять путем специального изучения применяемого материала. В технических же расчетах значения коэффициента теплопроводности обычно принимаются по справочным таблицам. При этом надо следить лишь за тем, чтобы физические характеристики материала (структура, плотность, влажность, температура, давление) были соответственны. Так как при распространении тепла температура в различных частях тела различна, то в первую очередь важно знать зависимость коэффициента теплопроводности от температуры. Для большого числа материалов эта зависимость оказывается почти линейной, т. е.  [c.10]

Вт/(м-°С). На это явление необходимо обращать особое внимание как при определении, так и при технических расчетах теплопроводности. Материалы с низким значением коэффициента теплопроводности [меньше 0,2 Вт/(м-°С)] обычно применяются для тепловой изоляции и называются теплоизоляционными.  [c.11]

Значения коэффициента теплопроводности k для некоторых материалов и веществ показаны на рис. 8.5. В технической литературе значения теплопроводности часто даются в единицах британской системы, поэтому советуем запомнить переводной коэффициент—62,3.  [c.213]

Удельный вес у, коэффициент теплопроводности Я, удельная теплоемкость с и предельная температура применения некоторых технических материалов  [c.194]

Объемный вес 7 коэффициент теплопроводности X и теплоемкость с различных технических материалов  [c.184]

Термоэлементы 8 Тетроды лучевые 560 Технеций — Свойства 408 Техническая термодинамика — см. Термодинамика техническая Технические материалы — Коэффициент теплопроводности 184  [c.733]

Различные физические тела обладают разными значениями коэффициента теплопроводности. Кроме того, для данного вещества коэффициент теплопроводности зависит от температуры, объемного веса, влажности, структуры и в некоторой мере от давления. При технических расчетах изменением Я с температурой обычно пренебрегают и принимают в качестве расчетного значение, среднее для того интервала температур, для которого предназначен данный материал. В приложении дается таблица значений коэффициента теплопроводности X для наиболее употребительных материалов.,  [c.13]

Парциальное давление НС1 и HjO над водными растворами хлористого водорода — кн. 1, табл. 8.7 --NH3 и Н2О над растворами аммиака — кн. 1, табл. 8.8 Плотность агрегатная золошлаковых материалов — кн. 3, табл. 8.23 —, коэффициент теплопроводности, удельная теплоемкость технических материалов — кн. 2, табл. 2.6  [c.543]


Искусственные фафиты, обладают совершенным кристаллическим строением, высокой анизотропией свойств (коэффициенты теплопроводности пирографита вдоль и поперек слоев, соответственно, равны 372 и 1,16...3,5 Вт/(м К)) и являются высокотемпературным конструкционным материалом. Для этих графитов характерно увеличение прочности и модуля упругости при нагреве. До температур 2200...2400°С прочность технического графита повышается на 40...60% и лишь при дальнейшем нагреве начинает снижаться. При температуре выше 1700°С появляется ползучесть. Удельная прочность при нагреве сохраняется высокой (для пирографита o/pq= 1,1 Ю" м).  [c.331]

Коэффициент теплопроводности X различных технических материалов  [c.81]

В данном разделе проекта приводятся основные технические характеристики на принятые в проекте теплоизоляционные и вспомогательные материалы в полном соответствии с ГОСТ и утвержденными ТУ. В зависимости от вида теплоизоляционного материала в технических условиях указывается наименование материала, определение, область применения, внешний вид, форма и размер материала, объемный вес, коэффициент теплопроводности, предельная температура применения, механическая прочность, содержание влаги, водопоглощение и ссылка на соответствующий норматив. Приложенные к проекту технические условия на теплоизоляционные материалы являются руководящим материалом ири приемке материалов.  [c.9]

При экспериментальном изучении теплового режима наряду с температурными измерениями необходимы также измерения тепловых потоков, теплофизических свойств и коэффициентов теплообмена (теплоотдачи). Имеются методы для исследования теплофизических свойств (теплопроводность, теплоемкость, температуропроводность) технических материалов разработан ряд методов измерения тепловых потоков [Л. 7, 28, 30, 31, 32, 37 и др.].  [c.3]

Изоляционные материалы и изделия — Объемный вес, коэффициент теплопроводности и предельная температура 193 Износ калибров — Допуски 376 Импульс силы 167 Индикаторы 423 — Техническая характеристика 425, 427  [c.590]

Данные для расчета оформлены в виде двух файлов сведения о материале конструкция узла и условия его эксплуатации. Сведения о материале содержат наименование марку название предприятия-изготовителя номер стандарта (технического условия) на материал технологические данные — форму выпуска, наиболее производительный метод переработки в изделие, максимально и минимально достижимые толщины изделия, усадку и ее отклонение от номинального значения эксплуатационные данные — модуль упругости при сжатии при нормальной и повышенных температурах, влагопоглощение после 24 ч испытаний в воде и максимальное, теплопроводность, температурный коэффициент линейного расширения, трения покоя и движения при отсутствии смазки, разовом и периодическом смазывании. Файл Конструкция узла и условия его эксплуатации содержит рабочий диаметр и ширину подшипника, толщину полимерного слоя, тип корпуса, его диаметр и толщину, диаметр и длину участков вала, условия смазывания, допустимый зазор, температуру окружающей среды, нагрузку на подшипник, максимальную частоту вращения вала или подшипника. После введения данных в программу предусмотрена их распечатка для удобства анализа получаемых результатов.  [c.93]

Анализ работ по автоэлектронной эмиссии показывает, что материалы автокатодов, предназначенных для работ в условиях высокого технического вакуума, должны обладать специфической совокупностью свойств, таких, как низкие и стабильные значения работы выхода электронов и коэффициента катодного распыления, а также высокие значения механической прочности, электро- и теплопроводности. Кроме того, материалы автокатодов должны быть технологичными и достаточно доступными.  [c.5]

Для комплексного исследования теплоемкости и коэффициента а твердых тепло-изоляторов (пластиков, огнеупоров) и полупроводников в режиме монотонного разогрева образцов в диапазоне температур от 50 до 900° С разработан прибор ДК-ас-900, представляющий собой техническую реализацию метода трубки [109]. Погрешность измерений 5—8%. Для независимых измерений коэффициентов а и Л твердых полимерных и полупроводниковых материалов, теплопроводность которых не превышает 10 Вт/(м-°С), в режиме монотонного разогрева образцов в интервале температур от —100 до - -400°С разработан прибор ДК-а .-400, представляющий собой объединение двух калориметров, один из которых приведен выше [см. рис. (5-17)]. Погрешность измерений не превышает 3—5% [Ю9]. Универсальный прибор ДК-асЯ,-400 (рис. 5-22), предназначенный для комплексного исследования теплофизических свойств материалов в монотонном режиме [109], является объединением трех калориметров, два из которых приведены выше [см. рис. (5-17) и (5-19)].  [c.317]


Модуль упругости лежит в пределах I —10 МПа, т. е. он в тысячи и десятки тысяч раз меньше, чем для других материалов. Особенностью резины является ее малая сжимаемость (для инженерных расчетов резину считают несжимаемой) коэффициент Пуассона 0,4—0,5, тогда как для металла эта величина составляет 0,25—0,30. Другой особенностью резины как технического материала является релаксационный характер деформации. При нормальной температуре время релаксации может составлять 10 с и более. При работе резины в условиях многократных механических напряжений часть энергии, воспринимаемой изделием, теряется на внутреннее трение (в самом каучуке и между молекулами каучука и частицами добавок) это трение преобразуется в теплоту и является причиной гистерезисных потерь. При эксплуатации толстостенных деталей (например, шин) вследствие низкой теплопроводности материала нарастание температуры в массе резины снижает ее работоспособность.  [c.482]

Скорость нагрева лакокрасочного покрытия при терморадиационной сушке зависит ) от свойств самого покрытия (теплоемкость, коэффициент поглощения и др.) 2) от интенсивности облучения 3) от свойств окрашиваемого изделия (теплопроводность, теплоемкость коэффициент отражения, масса, габаритные размеры, конфигурация). Режимы сушки, приведенные в технических условиях на лакокрасочные материалы, относятся к обычной конвекционной сушке, а не к терморадиационной.  [c.270]

Природные материалы. Алмаз природный состоит из чистого углерода с небольшим количеством примесей. В промышленных целях используют технический алмаз. Отличается высокой твердостью, теплопроводностью, высоким модулем упругости, малыми коэффициентами линейного и объемного расширения, малой склонностью к адгезии с металлами, за исключением железа и его сплавов. Вместе с тем он хрупок, обладает анизотропией (прочность кристалла в различных направлениях изменяется в 500 раз). При нагревании свыше 700—800 °С переходит в графит.  [c.701]

В зависимости от изменения температуры значения к для разных материалов изменяются по-разному. Так, например, при повышении температуры величина к чистых металлов падает, а к сплавов, строительных и изоляционных материалов растет. В технических расчетах величину коэффициента теплопроводности к обычно прини . ают постоянной соответственно среднему значению интервала температур.  [c.100]

При производстве изделий йз реактопластов, а также при использовании полимерных компаундов в качестве пропиточных и заливочных материалов на различных этапах их изготовления требуется термическая обработка. Эти материалы имеют низкие коэффициенты теплопроводности и поэтому использование для их нагрева внешних источников тепла не всегда удовлетворяет требованиям произ-Ьодительности, качества продукции, технологичности, а также возможности осуществления автоматизации технологических процессов, что в настоящий период является важнейшей проблемой технического прогресса. Нагрев от внешнего источника тепла происходит медленно. По сечению нагреваемого материала создается неоднородное температурное поле, приводящее к возникновению различных скоростей химических реакций при отверждении и образованию локальных. усадок (химических, термических). Это, в свою очередь, приводит к неоднородности свойств материала и к появлению внутренних напряжений, снижающих физические и механические свойства изделий. Кроме того, длительное воздействие высоких температур может вызвать частичную деструкцию полимера в поверхностных слоях изделия, также неблагоприятно влияющую на его физические и механические свойства. Отмеченные недостатки не могут быть устранены без использования нового метода нагрева.  [c.25]

Все поступающие для монтажа теплоизоляционные и вспомогательные материалы должны быть приняты техническим контролем и зарегистрированы в специальном журнале. Каждая полученная на монтаже партия материалов должна быть снабжена паспортом (сертификатом), подписанным ОТК завода-поставщика. Контроль качества материалов осуществляется путем проверки их соответствия сертификату, а в случае изготовления их на месте монтажа — нормативной документации и техническим условиям на производство этих материалов, а также путем внешнего осмотра и контрольно-выборочного определения физико-механических свойств материалов. Особое внимание при приемке теплоизоляционных материалов до.пжно быть обращено на объемный вес, коэффициент теплопроводности, состав, влажность, размеры изделий и их механическую прочность. Все отступления от ГОСТ, ОСТ и технических условий проекта, а также замена одного Д1атериала другим должны быть строго обоснованы и согласованы с заказчиком и проектной организацией. В противном случае эти материалы не должны быть приняты и допущены к производстру теплоизоляционных работ.  [c.401]

Все снятые при демонтаже бывшие в употреблении теплоизоляционные материалы при использовании их при ремонте изоляции должны быть очищены от прокидочвого, промазочного и покровного слоев. Сыпучие материалы должны быть подвергнуты тщательному измельчению и просеиванию. Использование старых материалов может допускаться лишь в случае, если они удрвлетворяют техническим требованиям и соответствующим ГОСТ и техническим условиям. Для заделки небольших повреждений допускается нрименение боя формованных и блочных изделий. Старые материалы низкого качества с большим коэффициентом теплопроводности и объемным весом, а также произвольные смеси из остатков материалов и строительные материалы при ремонте изоляции не допускаются.  [c.427]

Наименование материалов (размеры в миллиметрах) ГОСТ или технические условия Объемный вес, кг/л . не более Коэффициент теплопроводности, кк/иЧм-чград, не более Предел прочности при изгибе, кПсм. ие менее Огнестойкость и предельная температура применения, °С Область применения  [c.374]


Наименование материалов гост или технические Объемный всс, кг м Коэффициент теплопроводности, ккал1м ч грпд, при температуре, °С Верх- ний темпе- ратур- ный предел Область применения в обмуровке  [c.196]

Подшипники, смазка которых не может быть гарантирована или недопустима по техническим условиям (например, высокие и низкие температуры некоторые агрессивные среды машины, где смазка может вызвать порчу продукции, н т. п.), выполняют из материалов на основе фторопласта-4. Фторопласт-4, как материал для подшипников, обладает уникальным комплексом свойств низкий коэффициент трения (/ 0,5.. . 0,1) широкий диапазон рабочих температур малая набухаемость, высокая химическая стойкость и др. Однако широкому его применению для изготовления подшипников препятствовали низкие нагрузочная способность и теплопроводность. Для повышения нагрузочной способности и теплопроводности создан новый антифрикционный материал — металлофторо-пласт (рис. 3.153), состоящий из стальной основы / и тонкого слоя (0,3.. . 0,4 мм) 2 сферических частиц бронзы, поры между которыми  [c.415]

К теплоносителям, используемым в ядерной энергетике, предъявляются специальные требования приемлемые ядерно-фнзические свойства, минимальное воздействие на конструкционные материалы, стойкость при облучении, термическая стойкость, низкая химическая активность, высокая температура кипения, небольшая вязкость, высокая теплопроводность, большая теплоемкость, низкая стоимость теплоносителя и т. д. Трудно найти теплоноситель, который удовлетворял бы всем этим требованиям в равной мере. Каждый из теплоносителей, используемый в ядерной энергетике, имеет преимущества и недостатки, определяющие область его применения. Выбор теплоносителя осуществляется с учетом всех физико-технических требований. Большое внимание при этом уделяется теплофизическим и гидродинамическим характеристикам теплоносителя. Во всех случаях теплообмена между потоком теплоносителя и обтекаемой им поверхностью существенное значение имеют процессы в гидродинамическом и тепловом пограничных слоях. Соотношение между тол-щицами гидродинамического 8 и теплового слоев в основном зависит от соотношения кинематической вязкости v и коэффициентов температуропроводности среды а, т. е. от критерия Рг. По значению числа Рг теплоносители можно разделить на три группы теплоносители с Рг < 1 теплоносители с Рг 1 и теплоносители с Рг > 1.  [c.8]

Предусмотреть эти процессы и принять соответствующие технические решения без предварительных расчетов весьма сложно, так как для этого необходима полная информация о происходящих в природе изменениях (изменение температуры и влажности внешней среды, солнечной радиации, скорости ветра и т.д.). Кроме того, необходимо знать такие характеристики материалов покрытия (бетон, асфальт) и основания, как теплопроводность, влагопроводность, температуропроводность, коэффициенты переноса тепла и переноса вещества, удельная теплоемкость и массоемкость материалов, удельная теплота фазовых превращений, интенсивность внутренних источников тепла и влаги и др., а также законы изменения этих свойств в зависимости от изменения температуры и влажности в широких пределах — от повышенных температур вплоть до низких отрицательных.  [c.80]

В настоящее время разработана технология производства цирконового фарфора и установлены технические характеристики материала, показывающие его преимущества перед другими материалами. Такой фарфор имеет механическую прочность на сжатие около 7000 кг/сж , модуль упругости 1,75-10 кг/см , теплопроводность 0,012 ккал1м град час, коэффициент линейного расширения 4-10 и более высокую термическую стойкость, чем обычный высоковольтный. В отношении механической прочности и диэлектрических свойств цирконовый фарфор уступает лишь изоляторам из высокоглинозе1МИстых масс, содержащих 75 — 95% АЬОз.  [c.623]

Одним из важнейших напрадлений технического прогресса в машиностроении является непрерывно возрастающее применение высокоэффективных полимерных материалов в различных конструкциях машин и оборудовании. Столь широкое применение этих материалов обусловлено небольшой плотностью, хорошими физико-механическими, термо- и звукоизоляционными, антифрикционными, фрикционными и герметизирующими свойствами Высокой химической стойкостью, а также способностью поглощать и гасить вибрации. Благодаря этим свойствам пластические массы стали высококачественным конструкционным материалом. К недостаткам пластических масс относятся повышенная хрупкость, низкая теплопроводность, большой коэффициент линейного расширения, низкая теплостойкость, плохая приставаемость к металлам.  [c.324]


Смотреть страницы где упоминается термин Технические материалы — Коэффициент теплопроводности : [c.210]    [c.11]    [c.11]    [c.712]    [c.192]    [c.620]   
Справочник машиностроителя Том 2 Изд.3 (1963) -- [ c.184 ]



ПОИСК



Коэффициент теплопроводности

Коэффициент теплопроводности как техническая характеристика материала

Коэффициент теплопроводности материалов

Коэффициент технического

Мел — Коэффициент теплопроводност

Технические материалы — Коэффициент

Технический Материалы



© 2025 Mash-xxl.info Реклама на сайте