Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Варианты нелинейного поведения конструкций

Варианты нелинейного поведения конструкций  [c.13]

Итак, уравнения (11.63) можно рассматривать как математическую формулировку принципа стационарности потенциальной энергии. Этот принцип гласит, что если потенциальная энергия упругой конструкции (линейной или нелинейной) представляется функцией от неизвестных перемещений узлов, то конструкция будет находиться в состоянии равновесия, когда перемещения имеют такие значения, при которых полная потенциальная энергия принимает стационарное значение. Обычно конструкция находится в состоянии устойчивого равновесия, и тогда полная потенциальная энергия минимальна. При этих условиях уравнения (11.63) представляют собой запись принципа минимума потенциальной энергии. Для неустойчивых конструкций потенциальная энергия может иметь либо максимальное, либо нейтральное значение. При линейном поведении конструкции уравнения (11.63) соответствуют уравнениям равновесия метода жесткостей, который можно считать частным вариантом метода перемещений ).  [c.503]


Эксплуатационные нагрузки, действующие на элементы конструкций из полимерных материалов, нередко претерпевают изменения. Отсюда возникает необходимость в разработке методов расчета деформационных и прочностных свойств полимеров при переменных напряжениях. В настоящее время достаточно полно рассмотрены возможности описания механического поведения полимеров в условиях изменяющихся нагрузок при одноосном напряженном состоянии с помощью линейной теории вязкоупругости и различных вариантов нелинейной теории вязкоупругости [71, 138]. Наибольший практический интерес представляют случаи нагружения при сложном напряженном состоянии. Однако сведений о ползучести полимеров при сложном напряженном состоянии и переменных напряжениях, а также о методах теоретического описания опытных данных в научно-технической литературе крайне мало.  [c.146]

В настоящем параграфе изложены экспериментальные результаты по ползучести кристаллических полимеров при различных напряженных состояниях и статически изменяющихся нагрузках, а также предложен вариант теоретического описания нелинейного поведения этих материалов в указанных условиях, пригодный для практического применения при расчетах несущей способности элементов конструкций [60].  [c.146]

В работах А. Г. Горшкова и М. И. Мартиросова [29], М. И. Мартиросова [51-53] проведен численный анализ динамического поведения упругих сферических оболочек, связанных с твердым телом, при несимметричном входе в полупространство, занятое идеальной несжимаемой жидкостью. Гидродинамические нагрузки, действующие на оболочку со стороны жидкости, определяются как суперпозиция нагрузок от вертикального проникания оболочки и горизонтального движения изменяющейся во времени ее погруженной части. Для исследования напряженно-деформированного состояния тонкой упругой оболочки используется один из вариантов геометрически нелинейных уравнений движения, учитывающих инерцию вращения и деформацию поперечного сдвига. К ним добавляются уравнения движения всей конструкции как твердого тела. Задача решается методом конечных разностей с применением явной схемы типа крест . Анализируется влияние на динамическое поведение конструкции начальной скорости и угла входа, начальной угловой скорости вращения, сжимаемости жидкости, подъема ее свободной поверхности (эффект Г. Вагнера), толщины оболочки, массы твердого тела и ряда других факторов. Исследуется также влияние гидроупругого взаимодействия между оболочкой и жидкостью на динамику входа. Показано, что при углах тангажа ч ) 60° задачу о наклонном входе конструкции в жидкость можно заменить задачей о вертикальном входе с начальной скоростью, равной вертикальной составляющей при несимметричном погружении. Кроме того, установлено, что до скоростей Уо 100 м/с сжимаемость жидкости (воды) практически не влияет на напряженно-деформированное состояние сферической оболочки.  [c.402]


В настоящее время большое внимание уделяется созданию адекватных моделей нелинейных процессов деформирования, связанных с большими деформациями, неупругим поведением материала и нелинейными динамическими волновыми явлениями в слоистых и композиционных материалах. Построение общих сложных моделей, как правило, сочетается с необходимостью разработки достаточно простых, но в то же время эффективных моделей описания процессов с требуемой точностью, выделением главных или ведущих параметров рассматриваемых процессов деформирования и созданием экономичных программ их численной реализации. При решении задач механики сплошных сред и деформирования элементов конструкций достаточно универсальными и широко распространенными являются метод конечных элементов (МКЭ), метод граничных элементов (МГЭ), вариационно-разностные методы (ВРМ), метод конечных разностей (МКР) в различных вариантах и сочетаниях с другими методами. В основу этих методов положено дискретное представление функций непрерывного аргумента и областей их определения, ориентированное на использование современных ЭВМ с дискретным способом обработки информацш, включая вычислительную технику новой архитектуры с векторными и параллельными процессорами. В механике, в частности в строительной, дискретное представление тел или конструкций в виде набора простых элементов имеет глубокие исторические корни, которые в свое время и послужили отправной точкой развития и обобщений МКЭ.  [c.5]


Смотреть главы в:

Введение в компьютерный конструкционный анализ  -> Варианты нелинейного поведения конструкций



ПОИСК



Вариант

Варианты конструкции ПР

Нелинейное поведение конструкци

Поведени

Поведение нелинейное



© 2025 Mash-xxl.info Реклама на сайте