Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Рассеяние звука на упругих телах

РАССЕЯНИЕ ЗВУКА НА УПРУГИХ ТЕЛАХ  [c.212]

УЗ-вые волны затухают значительно быстрее, чем волны более низкочастотного диапазона, т. к. коэфф. классического поглощения звука (на единицу расстояния) пропорционален квадрату частоты. В низкочастотной области коэфф. релаксационного поглощения также растёт пропорционально квадрату частоты, однако при повышении частоты этот рост замедляется и коэфф. поглощения стремится к постоянной величине. Область, где наблюдается такое изменение хода коэфф. поглощения, наз. релаксационной, а средняя её частота — частотой релаксации. Величина, обратная частоте релаксации,— время релаксации — характеризует процесс перераспределения энергии внутри вещества. Помимо характерного хода коэфф. поглощения УЗ, в релаксационной области наблюдается рост скорости звука с частотой — дисперсия, обусловленная физич. процессами в веществе и отличающаяся от дисперсии скорости звука, характерной для любых частот и связанной с геометрич. условиями распространения волны. Дисперсия УЗ в релаксационных областях обычно не превышает нескольких процентов. В многоатомных газах релаксация связана с обменом энергии между поступательными и внутренними степенями свободы, и характерные частоты лежат в среднем и даже низкочастотном диапазонах. В жидкостях к основным релаксационным процессам относятся, напр., внутримолекулярные превращения, структурная и химич. релаксации соответствующие частоты лежат чаще всего в области частот 10 —10 Гц. В твёрдых телах имеются релаксационные процессы различной природы, обусловленные, напр., взаимодействием ультразвука с электронами проводимости, со спиновой системой (см. Спин-фононное взаимодействие), С колебаниями кристаллической решётки. Влияние этих процессов проявляется в частотной зависимости поглощения УЗ. Резонансные явления типа акустического парамагнитного резонанса (область частот 10 —11 Гц) и акустического ядерного магнитного резонанса (10 —10 Гц) дают соответствующие пики поглощения. Резонансный характер может иметь также и дислокационное поглощение в кристаллах. Все эти особенности поглощения УЗ в твёрдых телах обусловлены взаимодействием УЗ-вых и гиперзвуковых волн с внутренними возбуждениями в твёрдых телах. Возникновение же такого взаимодействия связано с тем, что средние и высокие УЗ-вые частоты становятся сравнимы с характерными частотами процессов в веществе на молекулярном и атомном уровне, а длины волн сравнимы с параметрами внутренней структуры вещества. Последнее обстоятельство объясняет также увеличение рассеяния упругих волн на УЗ-вых частотах, наблюдаемое в микронеоднородных средах, в поликристаллич. телах сечение рассеяния на неоднородностях возрастает, если их размеры становятся порядка длины волны.. Связь характера распространения УЗ и, в частности, его высокочастотной области — гиперзвука — со структурой вещества и элементарными возбуждениями в нём является одной из важнейших особенностей УЗ-вых волн. Она позволяет судить о строении вещества на основании измерений скорости и погло-  [c.11]


Рассеяние звука происходит из-за резкого изменения свойств среды — её плотности и модулей упругости — на границе неоднородностей, размеры к-рых сравнимы с длиной волны. В газах это могут быть, напр., жидкие капли, в водной среде — пузырьки воздуха, в твёрдых телах — различные инородные включения или отдельные кристаллиты в поликристаллах и т. п. Особый интерес представляет рассеяние на хаотически распределённых в пространстве неодно-  [c.135]

Дифракция света может происходить не только на вводимой извне звук, волне, но и на собственных упругих колебаниях конденсирован ных сред (тв. тел, жидкостей) — это т. н. Мандельштама — Бриллюэна рассеяние.  [c.174]

Нелинейная упругость твердых тел помимо искажения формы профиля волны приводит еще к тому, что акустические волны в твердых телах взаимодействуют. Распространение в твердых телах помимо продольных волн еще и волн сдвига приводит к тому, что здесь возможностей взаимодействия волн по сравнению с жидкостями и газами существенно больше. В жидкостях и газах без дисперсии, как эго было рассмотрено в га. 2 и гл. 3, взаимодействуют волны только с колинеарньши В0ЛН0ВЫ1МИ векторами цри косых пересечениях звуковых пучков комбинационного рассеяния звука на звуке нет, т. е. вне области взаимодействия нет звуковых волн комбинационных частот. Иначе обстоит дело в твердых телах.  [c.288]

Дифракция упругих волн в твердых телах. В основе большинства способов, реализующих ультразвуковые методы неразрушающего контроля (УЗМНК), используется лучевое представление о распространении и рассеянии ультразвуковых волн на дефектах, размеры которых существенно больше длины волны, подчиняющееся законам геометрической оптики (ГО). Согласно этому представлению каждую точку дефекта рассматривают как вторичный излучатель звука, а амплитуду отраженной волны вне дефекта считают равной нулю. Замечательной особенностью законов ГО является их локальность. Поле в приближении ГО как бы распадается на совокупность лучевых трубок, которые можно рассматривать как каналы по каждому из них распространяется энергия, независимо от наличия соседних каналов.  [c.33]

Предлагаемая книга посвящена распространению ультразвуковьЕх волн в жидкостях, газах и твердых телах, рассматриваемых как сплошные среды с разными характеристиками упругости. В ней систематизированы вопросы, имеющие непосредственное отнощение к специфике ультразвука возможности генерирования направленных пучков плоских волн, высокой интенсивности ультразвукового излучения и т. д. В связи с этим основное внимание в книге уделено различным аспектам распространения плоских волн их общим характеристикам, затуханию, рассеянию на неоднородностях, отражению, преломлению, прохождению через слои, интерференции, дифракции, анализу нелинейных явлений, пондеромоторных сил, краевых и других эффектов в ограниченных пучках. Рассматриваются также сферические волны, которые формируются при пульсационных колебаниях сферических тел, в дальней зоне излучателей малых размеров, в ультразвуковых фокусирующих системах. Большинство из этих вопросов обсуждается применительно к продольным волнам для сред, обладающих объемной упругостью, а для других типов волн, в частности для сдвиговых волн в жидкостях и твердых телах, дополнительно рассматриваются те вопросы, которые составляют их специфику. К ним относятся граничные и нелинейные эффекты в твердых телах, трансформация волн, их дисперсия, поверхностные волны, соотношения между скоростями звука и модулями упругости в кристаллах, в том числе в пьезоэлектриках.  [c.2]


Первое (в порядке исторического становления) важное прикладное направление в акустике связано с получением при помощи акустических волн информации о свойствах и строении веществ, о происходящих в них процессах. Применяемые в этих случаях методы основаны на измерении скорости распространения и коэффициента поглощения ультразвука на разных частотах (1 о" +10 Гцвгазахи 10 +10 Гцвжид-костях и твердых телах). Такие исследования позволяют получать информацию об упругих и прочностных характеристиках материалов, о степени их чистоты и наличии примесей, о размерах неоднородностей, вызывающих рассеяние и поглощение волн, и т. д. Большая группа методов базируется на эффектах отражения и рассеяния упругих волн на границе между различными средами, что позволяет обнаруживать присутствие инородных тел и их местоположение. Эти методы лежат в основе таких направлений, как гидролокация, неразрушающий контроль изделий и материалов, медицинская диагностика. Применение акустической локации в гидроакустике имеет исключительное значение, поскольку звуковые волны являются единственным видом волн, распространяющихся на большие расстояния в естественной водной среде. Как разновидность дефектоскопии, широко применяемой в промышленности, можно рассматривать ультразвуковую диагностику в медицине. Даже при небольшом различии в плотности биологических тканей происходит отражение ультразвука на их границах. Поэтому ультразвуковая диагностика позволяет выявлять образования, не обнаруживаемые с помощью рентгеновских лучей. В такой диагностике используются частоты ультразвука порядка 10 Гц интенсивность звука при этом не превышает 0,5 мВт/см , что считается вполне безопасным для организма. В настоящее время развитие дефектоскопии привело к созданию акустической томографии. В этом методе с помощью набора приемников ультразвука или одного сканирующего приемника регистрируются упругие волны, рассей-  [c.103]

Как уже было сказано в гл. X, 13, флуктуации плотности в твердом теле можно себе представить как результат суперпозиции стоячих упругих (акустических) волн. Упругие волны представляют собой трехмерные фазовые дифракционные решетки (см. гл. IX, 9). Рассеяние, вызванное флуктуациями плотности, есть не что иное, как дифракция на этих решетках. Но эти решетки — пульсирующие они периодически появляются и исчезают (исчезают в моменты, когда деформация обращается в нуль). Поэтому дифрагируя свет, они вместе с тем модулируют его. Эта модуляция также должна проявляться как расщепление спектральных линий падающего света. Именно это расщепление имелось в виду в конце гл. X ( 13). Оно гораздо меньше, чем то, о котором шла речь выше. Как показывает теория, здесь й/ш порядка отношения скорости звука в кристалле к скорости света, т. е. порядка 10 . С целью обнаружить это явление был предпринят тот цикл экспериментальных исследований Г. С. Ландс-берга и Л. И. Мандельштама, который увенчался открытием комбинационного рассеяния света. Расщепление линий, вызванное флуктуациями плотности, впервые удалось обнаружить Е. Ф. Гроссу (Ленинград) в 1930 г., и притом не только в твердых телах, но и в жидкостях.  [c.515]


Смотреть страницы где упоминается термин Рассеяние звука на упругих телах : [c.212]    [c.133]    [c.213]    [c.138]    [c.98]    [c.203]    [c.96]    [c.477]    [c.122]    [c.122]   
Смотреть главы в:

Излучение и рассеяние звука  -> Рассеяние звука на упругих телах



ПОИСК



Рассеяние упругое

Упругие тела



© 2025 Mash-xxl.info Реклама на сайте