Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Переход к статистической механике классических систем

Переход к статистической механике классических систем  [c.64]

ПЕРЕХОД К СТАТИСТИЧЕСКОЙ МЕХАНИКЕ КЛАССИЧЕСКИХ СИСТЕМ  [c.331]

Квантовая статистика ставит математике и некоторые новые задачи так, обоснование своеобразных принципов статистических расчетов, лежащих в основе новых статистик Бозе-Эйнштейна и Ферми-Дирака, потребовало математических рассуждений, принципиально (а не только по аналитическому аппарату) отличных от всех тех, с какими имела дело классическая статистическая механика. Тем не менее можно утверждать, что переход от классических систем к квантовым в основном не создал каких-либо существенно новых математических трудностей любой метод обоснования статистической механики классических систем в принципе может быть применен и к системам квантовым, требуя для достижения этой цели только расширения аналитического аппарата, которое может иногда вызвать небольшие трудности технического характера, но в принципиальном плане не создает новых математических задач там, где мы ранее оперировали интегралами, приходится иметь дело с конечными суммами или рядами, а непрерывные вероятностные распределения заменяются дискретными, для которых имеют место вполне аналогичные предельные теоремы.  [c.8]


За время, отделяющее решение модели Изинга Онсагером в 1944 г. от решения модели жестких шестиугольников Бакстером в 1980 г., статистическая механика двумерных систем обогатилась значительным числом точных результатов. Принято называть модель точно решаемой, когда для некоторой физической величины, такой как свободная энергия, параметр порядка или корреляционная функция, получено удобное математическое выражение или, по крайней мере, когда удалось свести их вычисление к задаче классического анализа. Такие решения, которые поначалу кажутся иногда каким-то курьезом, часто бы-виют интересны тем, что иллюстрируют общие принципы и теоремы, строго выведенные в рамках определенных теорий, а также позволяют контролировать приближенные методы, применимые к более реалистическим и сложным моделям. В теории фазовых переходов модель Изинга, результаты Онсагера и Янга успешно сыграли такую роль. Методы Либа и Бакстера для разнообразных вершинных моделей развили этот успех и расширили набор известных критических показателей, дав материал для сравнения с методами экстраполяции, и заставив уточнить концепцию универсальности. Тесно связанные с классическими двумерными моделями, хотя и не представляющие интереса для теории критических явлений, квантовые одномерные модели, такие, как магнитная цепочка, и знаменитое решение Бете, несомненно внесли вклад в понимание структуры возбуждений в системах с большим числом степеней свободы. Можно было бы также обратиться к физике одномерных проводников. Все эти вопросы теоретической физики, которые, несомненно, оправдывают исследования точно решаемых моделей, не являются предметом настоящей книги, поскольку их изложение потребовало бы обширных и в то же время глубоких познаний в теоретической физике. Речь будет идти в основном  [c.8]

По поводу этих работ Мизеса [14], [24], так же как и всех других работ такого типа, следует отметить, что они, по существу, вообще не относятся к той проблеме обоснования, которая рассматривается в настоящей работе,— к выяснению связи физической статистики и микромеханики. Мизес с самого начала отказывается от постановки задачи об установлении этой связи. Между тем, практическая невозможность решить уравнения механики для статистических систем совсем не означает принципиальную возможность от них отказаться и, в частности, не означает возможности отказаться от вполне поддающихся учету качественных следствий дифференциальных уравнений движения (на основании сказанного в 18, можно видеть, например, в каких случаях допустимо в классической механике исследование схемы цепей Маркова, а также можно видеть, что в этих случаях условие сим метрии вероятностей переходов не выполняется). Настоящая задача обоснования статистики заключается не в том, чтобы дать построение всей системы физической статистики, исходя из некоторых внутренних принципов, из специально выбранных аксиом, а в том, чтобы согласовать наличие вероятностных законов статистической механики с теми выводами, которые вытекают из микромеханики (например, в классической теории мы должны считать, что в каждом данном случае осуществляется определенное микросостояние, независимо от того, знаем ли мы его или нет, а в квантовой теории мы можем, например, извлекать следствия из стационарности  [c.124]


Мы поставим перед собой задачу показать, как осуществляется переход от механического (или, как чаще говорят, динамического) рассмотрения системы многих частиц к кинетическому, уже использовавшемуся нами, методу описания газов. При этом мы изложим выводы кинетических уравнений, основанные на классической и квантовой статистической механике систем многих частиц.  [c.174]

Во второй части книги автор переходит к систематическому изложению статистической механики на основе метода Гиббса. В этой части рассмотрены вопросы, касающиеся идеальных и неидеальных квантовых и классических систем. Здесь читатель может познакомиться с методом групповых разложений, с современной постановкой Квантовой задачи многих тел, с проблемой фазовых переходов, являющейся одной из важнейших в статистической механике.  [c.5]

Методы теории фракталов, как правило, применяются в самых сложных разделах теоретической физики — квантовой теории поля, статистической физике, теории фазовых переходов и критических явлений. Цель монографии — показать, что идеи н методы теории фракталов могут быть эффективно использованы в традиционном, классическом разделе механики — механике материалов. Круг рассмотренных материалов достаточно широк дисперсные материалы от металлических порошков до оксидной керамики, полимеры, композиционные материалы с различными матрицами и наполнителями, полиграфические материалы. Построена статистическая теория структуры и упруго—прочностных свойств фрактальных дисперсных систем. Разработан фрактальный подход к описанию процессов консолидации дисперсных систем. Развита самосогласованная теория эффективного модуля упругости дисперсно—армированных композитов стохастической структуры в полном диапазоне изменения объемной доли наполнителя. Теория обобщена на композиты с бимодальной упаковкой наполнителей, а также на композиционные материалы с арми — рованием по сложным комбинированным схемам. Рассматривается применение теории фракталов для исследования микроструктуры и физико— механических свойств полиграфических материалов и технологии печатных процессов.  [c.2]


Смотреть страницы где упоминается термин Переход к статистической механике классических систем : [c.335]    [c.111]    [c.7]    [c.196]   
Смотреть главы в:

Термодинамика и статистическая физика Т.2 Изд.2  -> Переход к статистической механике классических систем

Термодинамика и статистическая физика Теория равновесных систем  -> Переход к статистической механике классических систем



ПОИСК



Газ классический

Классическая система

Механика классическая

Механика статистическая классическая

СТАТИСТИЧЕСКАЯ МЕХАНИКА Классическая статистическая механика

Статистическая механика



© 2025 Mash-xxl.info Реклама на сайте