Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Медь первичная

Медь первичная поставляется по ГОСТ 859-41 пяти марок МО, М1, М2, М3 и М4 и по ТУ цветной металлургии бескислородная марок А и Б, вакуумная (условно Бак.) и раскислена марганцем (условно Рас.) согласно данных, приведенных в табл. 17.  [c.133]

Медь первичная, марки и химический состав в %  [c.134]

Индий легко сплавляется с медью. Однако вследствие значительной испаряемости индия плавку следует вести под давлением защитного газа [17]. Согласно [18] при спекании в вакууме спрессованной (Р = 7000 кГ/см ) смеси порошков индия и меди первичная реакция взаимодействия между ними с образованием химического соединения идет при 465°.  [c.356]


При опыте холостого хода с помощью амперметра А, двух вольтметров V J и 2 ваттметра 1 (фиг. 150, а) определяются ток холостого хода, напряжение в первичной цепи трансформатора, э. д. с. его вторичной обмотки и активная мощность, потребляемая при холостом ходе. Эти измерения повторяются для каждой ступени включения сварочного трансформатора. Так как при холостом ходе потери энергии в меди первичной обмотки малы, можно считать, что измеренная активная мощность Рд соответствует активным потерям в стали сердечника Рж- Это предположение дает возможность определить активную составляющую тока холостого хода по формуле (57).  [c.215]

Медь первичная в зависимости от степени чистоты подразделяется на марки, приведенные в табл. 1.13, и поставляется по ГОСТ 859-78. Буква б в названиях марок означает — бескислородная, а р — раскисленная.  [c.54]

Медь первичная по ГОСТ 859-78 подразделяется на марки с массовым содержанием Си от 99,950 до 99,993 %. Медь поставляется в качестве полуфабрикатов в виде прутков, листов, лент, проволоки, фольги и других катаных и тянутых изделий с нормированием их физических и механических свойств.  [c.126]

Вследствие сдвига диаграммы состояния системы А1—Си при воздействии давления средняя концентрация меди в первичных кристаллах твердого раствора составляет 2,8—3,5% (поршневое прессование), в то время как при кристаллизации под атмосферным давлением 1,3—1,8%.  [c.125]

Глубинная опасная зона была обнаружена при изучении свойств поверхностных слоев технически чистых металлов — меди и алюминия[24]. В тяжелых условиях трения при значительном тепловыделении на поверхности существенную роль начинают играть процессы отдыха, и кривая распределения микротвердости (которой автор характеризует напряженное состояние материала) по глубине имеет заметно выраженный максимум. Таким образом, характер распределения пластической деформации по глубине определяется сочетанием условий трения и физико-механических свойств контактирующих материалов. Положение максимума пластической деформации определяет место возникновения первичной трещины па поверхности или на некотором расстоянии от нее.  [c.9]

В табл. 2 приведены результаты определения глубины участвующего в отражении слоя меди при различных углах падения первичного пучка лучей на поверхность образца для трех излучений молибденового (Мо), кобальтового (Со), хромового (Сг).  [c.19]

На листе III, 1 (см. вклейку) изображена микроструктура литой оловянистой бронзы (10% Sn и 90% Си) при увеличении X ЮО после травления 70/о-ным раствором сернокислой меди в аммиаке. Структура дендритная. Тёмные оси дендритов, как кристаллы первичной генерации, обогащены, медью.  [c.108]


Наибольшее распространение получили жёсткие витки. В случаях, когда желательно защитить первичную обмотку от искр и брызг расплавленного металла и механических повреждений, рекомендуются бронирующие жёсткие витки. Успешно применяются жёсткие трубчатые витки (фиг. 61, ). Ветви таких витков представляют собой сплюснутые трубки, впаянные в общий коллектор. Высокая электропроводность катаной меди для трубок снижает тепловыделение, а тонкие стенки трубок обес-  [c.280]

Медь первичная в зависимости от степени чистоты подразделяется на марки, приведенные в табл. 11, и поставляется по ГОСТам 859—66 и 5.1—67 (марки МООА и МОЛ в виде катодов). Буква б в обозначении означает медь безкислородная , а буква р — раскисленная. Медь вакуумной плавки марки MB по ГОСТу 13339—67 см. в табл. 11. Медь марки ММц1 раскисленая марганцем (0,1—0,3%) для электровакуумной промышленности поставляется по ГОСТу 10989—64 (табл. 11).  [c.83]

Медь первичная в зависимости от степени чистоты подразделяется на маркп, приведенные в табл. 17 и на стр. 505, и поставляется по ГОСТ 859— 78 и ГОСТ 5.1.—67 (марки МООА и МОА в виде катодов). Буква б в названйязс марок означает — безкпслородная, ар — раскисленная.  [c.149]

КИ на штейн - отделение серн истых соединений меди и железа от рудных примесей. Штейны содержат до 16-60% Си. Медные штейны переплавляют в медеплавильном конвертере с продувкой воздухом и получают черновую медь, содержащую 1-2% примесей железа, цинка, никеля, мышьяка и др. Черновую медь рафинируют для удаления примесей. Содержание меди после рафинирования возрастает до 99,5-99,99% (медь первичная - технически чистая). Чистая медь имеет 11 марок (МООб, МОб, М16, М1у, М1, М 1р, М 1ф, М2р, МЗр, М2 и М3). Суммарное количество примесей в лучшей марке МООб - 0,01%, а в марке М3 - 0,5%.  [c.101]

Наиболее прочными сплавами на основе цинка являются тройные сплавы Zn—А1—Си. Структура этих сплавов весьма разнообразна (зависит главным образом от соотношения п количества алюминия и меди) и состоит из первичных выделений р (чистый цинк), а (раствор на базе алюминия, богатый цинком) или е (химические соединения Си2пз), двойной эвтектики Р+а, е+ +а или p-t-8 и тройной эвтектики a-fP + e, Например, литой силав с 5% А1  [c.629]

MOM — катодом. Возникающие в подобного рода гальванических элементах токи называют мотоэлектрическими токами. Обусловлены они тем, что перемешивание электролита уменьшает анодную концентрационную поляризацию, облегчая отвод первичных продуктов анодного процесса — ионов меди — в глубь раствора, а анодная концентрационная поляризация у меди превосходит ее катодную концентрационную поляризацию по кислороду.  [c.247]

Некоторое применение нашел сплав свинца с сурьмой и небольшими добавками меди (ВС). Структура сплава состоит из эвтектики а (твердый раствор Sb в РЬ) + р (твердый раствор РЬ в Sb), первичных кристаллов р и соединения UjSb, играющих роль твердой составляющей.  [c.357]

Взаимодействие кислорода с чистой поверхностью металла протекает в три этапа I) адсорбция кислорода, 2) иуклеация, т. е. образование зародышей, 3) рост сплошной оксидной пленки. На первых стадиях адсорбции пленка состоит из атомов кислорода, так как свободная энергия адсорбции атомов кислорода превышает свободную энергию диссоциации его молекул. Методом дифракции медленных электронов удалось установить, что атомы некоторых металлов входят в состав адсорбционной пленки и образуют относительно стабильную двухмерную структуру из ионов кислорода (отрицательно заряженных) и металла (положительно заряженных). Как уже говорилось в отношении пассивирующей пленки (разд. 5.5), адсорбционная пленка, составляющая доли монослоя, термодинамически более стабильна, чем оксид металла. На никеле, например, она сохраняется вплоть до точки плавления никеля [1 ], тогда как NiO разрушается вследствие растворения кислорода в металле . Дальнейшая выдержка при низком давлении кислорода ведет к адсорбции на металле молекул Оа, проникающих сквозь первичный адсорбционный слой. Так как второй слой кислорода связан менее прочно, чем первый, он адсорбируется не диссоциируя. Возникающая в результате структура более стабильна на переходных, чем на непереходных металлах [2]. Любые дополнительные слои адсорбированного кислорода связаны еще слабее, и наружные слои становятся подвижными при повышенных температурах, о чем свидетельствуют рентгенограммы, отвечающие аморфной структуре. Вероятно, ионы металла входят в многослойную адсорбционную пленку в нестехиометрических количествах и к тому же относительно подвижны. Например, обнаружено, что скорость поверхностной диффузии атомов серебра и меди выше в присутствии адсорбированного кислорода, чем в его отсутствие [3].  [c.189]


Карбонат циклогексиламина имеет несколько большее давление паров (53,32 Па при 25 °С), и его пары также эффективно ингибируют коррозию стали [45]. Высокое давление паров обеспечивает более быструю защиту стальной поверхности как при изготовлении первичной упаковки, так и при необходимости вскрытия и повторного запечатывания упаковки. При проведении этих операций концентрация пара может падать ниже необходимого для защиты стали значения. Пары этого вещества уменьшают коррозию алюминия, цинка и припоя, однако не оказывают ингибирующего действия на кадмий и усиливают коррозию меди, латуни и магния.  [c.273]

Рис. 25.33. Зависимость коэффициента ВЭЭ <т (сплош- Рис. 25.36. Зависимость коэффициента ВЭЭ а (сплошные линии) и коэффициента неупругого отражения ные линии) и коэффициента неупругого отражения элек-электронов т) от энергии первичных электронов для же- тронов ti от энергии первичных электронов для олова, леза. никеля, меди, галлия и германия [22] сурьмы, теллура, цезия, бария и лантана [22] Рис. 25.33. Зависимость коэффициента ВЭЭ <т (сплош- Рис. 25.36. Зависимость коэффициента ВЭЭ а (<a href="/info/232485">сплошные линии</a>) и коэффициента неупругого отражения ные линии) и коэффициента неупругого отражения элек-электронов т) от <a href="/info/127900">энергии первичных</a> электронов для же- тронов ti от <a href="/info/127900">энергии первичных</a> электронов для олова, леза. никеля, меди, галлия и германия [22] сурьмы, теллура, цезия, бария и лантана [22]
В подложке закрепляется спай медь-константановой термопары для контроля температуры секций. Токосъем с первичных преобразователей секции и с термопары происходит с помощью многожильных гибких проводников 3 во фторопластовой изоляции с. наружным диаметром не более 1 мм через короткие стороны тепломассомера. Перфорацию подложки можно производить только под массообменной секцией. Если тепломассомеры предназначаются для закладки под поверхностный слой продукта или материала (см, п. 2.2), то между секциями вклеиваются перегородки 4 из тепловлагоизоляционного материала с высотой, равной толщине поверхностного слоя и толщиной 1...2 мм, для предотвращения взаимного влияния тепломассообмена над отдельными секциями.  [c.64]

На средней частоте используются трансформаторы с замкнутой магнитной цепью броневого типа. Особенностью трансформаторов является высокая концентрация электромагнитной энергии и малые габариты, что позволяет встраивать их в закалочные станки и технологические линии. В некоторых многопозиционных станках, например в станках для закалки коленчатых валов, требование малых размеров трансформаторов является одним из основных. Трансформаторы универсальных закалочных установок и регулировочные автотрансформаторы кузнечных нагревателей должны иметь переменный коэффициент трансформации. Закалочные трансформаторы работают на нагрузку с коэффициентом мощности 0,2—0,4, часто в повторнократковременном режиме. Все трансформаторы имеют водяное охлаждение обмоток и магнитной цепи. Имеются три основные конструкции трансформаторов. Трансформаторы с цилиндрическими обмотками (ВТО-500, ВТО-1000) имеют одновитковую вторичную обмотку и помещенную внутрь нее много-витковую первичную. Магнитная система охлаждается радиаторными листами с припаяины.мп к ним трубками охлаждения. Трансформаторы просты II экономичны, но для изменения коэффициента трансформации ( гр) требуют смены перпичной обмотки. Серийно такие трансформаторы не выпускаются, но изготавливаются многими заводами для своих потребностей. Мощность трансформаторов 500 и 1000 кВ-А, частота 2,5 и 8 кГц. Трансформатор ТВД-3 имеет дисковые первичные и вторичные обмотки, что обеспечивает хорошее использование меди. Трансформатор имеет 44 ступени трансформации за счет переключения первичных и вторичных витков. Мощность 2000 кВ-Л, частота 2,5—8 кГц [41].  [c.170]

Об удовлетворительном выявлении структуры путем катодного распыления сообщено в работе [31]. Шлифованный образец устанавливают в качестве катода в электронной лампе (разрежение от 0,05 до 0,005 мм рт. ст.), анод лампы сделан из алюминия. При продолжительности эксперимента от 15 с до 10 мин в лампе создается напряжение от 2000 до 7500 В постоянного или переменного тока. В результате различной способности к распылению структурных составляющих выявляется структура образца. Структура медносеребряных сплавов хорошо проявляется после 15 с обработки, при этом первичный твердый раствор (особенно в литых образцах) и твердый раствор, богатый медью, в эвтектике окрашиваются в темно-коричневый цвет. Для успешного травления необходимо, чтобы образец содержал более одной, минимум две фазы, которые обладают различной склонностью к распылению. Так, медноцинковые сплавы с 28% Си хорошо протравли-  [c.22]

Травитель 23 [1,3—2,5 мл НО 0,5 г пикриновой кислоты 1 г СиО 100 мл спирта 10 мл HjO]. Этот травитель применяли Ле Шателье и Дюпюи [30]. С его помощью можно успешно выявлять первичную структуру сталей с низким содержанием фосфора. Соотношение количеств пикриновой кислоты и хлорида меди (I) можно изменять в довольно больших пределах, в то время как соотношение воды и спирта должно быть постоянным. Концентрацию соляной кислоты выбирают в зависимости от состава стали. Целесообразно готовить раствор с добавкой 1,3 и 2,5 мл соляной килоты. Путем предварительных экспериментов устанавливают, какой из растворов наиболее подходит. Для повышения контрастности рекомендуется увеличивать содержание соляной кислоты. Травление продолжают до тех пор, пока не  [c.53]

Трешатель 7 [10 мл НС1 5 г СиОг 100 мл спирта, 100 мл НаО]. Некоторые кислотные растворы для травления, содержащие соли меди, также пригодны для выявления макроструктуры качественной стали. Травитель, рекомендованный Каллингом [6], выявляет первичную (дендритную) структуру и аустенит в хромоникелевых сталях.  [c.104]

Подобный эффект оказывает реактив 16 (см. гл. V) для выявления фосфора, рекомендованный в работе [8]. По данным Халт-грейна и Лиллиеквиста [9], в аустенитных хромоникелевых сталях, которые переходят 8-область на диаграмме состояния, вначале проявляются первичные дендриты. При более длительном травлении на структуре проявляются вторичные аустенитные зерна После травления в течение нескольких часов вновь появляется пер вичная структура вследствие образования связанного слоя меди -Травитель 16 (см. гл. V) является лучшим из всех содержа щих медь растворов для выявления первичной структуры нержа веющих хромистых сталей. Он может также применяться для аустенитных хромоникелевых сталей.  [c.104]


Травитель За [3 мл НС1 97 мл этилового спирта]. Травитель 36 [2 мл НС1 10 г u ia 10 мл HjO], По данным Беляева [5], структура закаленных марганцовистых сталей хорошо выявляется путем предварительного травления в реактиве За и окончательного травления в реактиве 36. Возникающий при этом прочно сцепленный осадок меди растворяется насыщенным водным раствором аммиака с добавкой пероксида водорода, при этом можно выявлять первичную дендритную структуру.  [c.110]

В отличие от сталей, имеющих обширную область макротравления вследствие различной обработки, макротравление чугунов ограничивается выявлением первичной (литой) структуры. Реактивы, содержащие соли меди и выявляющие макроструктуру стального фасонного литья, не пригодны для чугунов. Несмотря на это, Митше [11 пытался применить реактив Оберхоффера для выявления макроструктуры чугуна. Однако были получены неудовлетворительные результаты. Отрицательный результат обусловлен составом чугунов. Ролл [2] применил способ отпечатков, по Бауманну, для выявления макроструктуры белого и серого чугунов. Этот способ использовали также Хаиеманн и Шрадер [3]. Выявление возможно благодаря марганцевым сульфидам, которые в доэвтектическом чугуне кристаллизуются в основном в дендритной форме, а в заэвтектических чугунах — в форме сетки. Однако не всегда марганцевых сульфидов достаточно для воспроизведения макроструктуры, если они содержатся в небольшом количестве, то не имеют характерной формы расположения.  [c.162]

Шрамм [И] доказывает возможность выявления этих примесей в сплавах цинка с железом с увеличивающейся добавкой железа (0,03 0,05 0,09 и 0,10%). В то время как богатая цинком т)-фаза выглядит темной, богатая железом б-фаза представляет собой тонкие светлые включения. Этот способ травления надежен при микроисследовании эвтектики, которая расположена ближе к цинку. Такие добавки, как, например, медь, магний и олово, особенно их распределение, обнаруживают также в первичном цинке с 98,30% цинка и 1,3% свинца.  [c.224]

На рис. 5.1 схематически показаны пять возможных механизмов воздействия излучения. Вакансии образуются как результат первичного столкновения нейтрона с атомом. Этот нейтрон продолжает испытывать столкновения с атомами до тех пор, пока не растратит свою энергию. Вторичный эффект является следствием передачи энергии нейтроном атому, с которым он столкнулся. Этот атом сталкивается с другими атомами, выбивая их из мест, занимаемых ими в кристаллической решетке, и передавая им энергию. В конце концов, выбитый атом теряет всю энергию и остается в промежуточном положении кристаллической решетки. Таким образом, при столкновении нейтронов и атомов решетки образуются два типа точечных дефектов — вакансии и смещенные атомы, расположенные в междоузлиях. Дине и Виньярд [3] вычислили число пар вакансия — смещенный атом в меди, образующихся при столкнове-  [c.233]

Согласно принятой методике необходимо измерить т. э. д. с. различных пар (всего 19 концов). Наибольщее значение имеют 37 комбинаций. Их можно разбить на три группы 1) четыре первичные термопарные комбинации [хромель — константан, хромель—алюмель, медь— константан и хромель — золото с 0,07 % (ат.) Fe] 2) семь комбинаций для тарировки, например константан — платина, и 3) двадцать две пары для сравнительной оценки материала, например константан — константан, полученного от разных поставщиков.  [c.395]

Поверхность образцов устанавливали в камерах РКД под углом 25° к первичному пучку рентгеновских лучей. Образцы из сплава ЭИ617 рентгенографировали в лучах -серии меди.  [c.160]

Алюминий первичный. Качество алюминия первичного определяется степенью чистоты и по этому признаку его разделяют (ГОСТ 11069—64) на 3 группы особой чистоты — марка А999 (т. е. продукт, содержащий не менее 99,999% алюминия и суммы примесей не более 0,001%) высокой чистоты — марки А995, А99, А97 и А95 (цифры обозначают содержание алюминия соответственно 99,995 99,990 99,970 и 99,95%) технической чистоты — марки А85 (99,85% алюминия), А8 (99,8%), А7 (99,70%), А6 (99,60%), А5 и АЕ (99,50%), АО и А (99,0%). К учитываемым примесям в порядке значимости (ГОСТ 11069—64) относятся железо (содержание определяют по ГОСТу 12703—67), кремний (ГОСТ 12702—67), медь (ГОСТ 12704—67), цинк (ГОСТ 12705—67), титан (ГОСТ 12706—67), ванадий (ГОСТ 12697—67), магний (ГОСТ 12698—67), марганец (ГОСТ 12699—67), натрий (ГОСТ 12700—67), хром (ГОСТ 12701—67). В алюминии марок А7, А6 и А5 и АО, предназначенного для производства деформируемых полуфабрикатов, отношение примеси железа к кремнию должно быть не менее 1,2. К обозначению марки такого металла добавляется буква п . Алюминий первичный поставляют (ГОСТ 11070—64) в чушках весом 5, 10 и 1000 кг маркировка установлена ГОСТом 11069—64.  [c.77]


Смотреть страницы где упоминается термин Медь первичная : [c.69]    [c.327]    [c.52]    [c.285]    [c.187]    [c.514]    [c.265]    [c.78]    [c.50]    [c.276]    [c.23]    [c.77]    [c.133]    [c.133]    [c.203]    [c.208]    [c.280]   
Смотреть главы в:

Резание цветных металлов Справочник  -> Медь первичная



ПОИСК



Медиана

Химический состав алюминия первичного меди технической



© 2025 Mash-xxl.info Реклама на сайте