Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Режимы термической обработки магнитной стали

Режимы термической обработки магнитной стали. ......... 868  [c.756]

Режимы термической обработки магнитной стали  [c.868]

В Справочнике приведены основные сведения о методах исследования и испытания металлических сплавов. В отличие от первого издания эти разделы дополнены изложением современных физических методов исследования (применение радиоактивных изотопов, интроскопия, внутреннее трение, ядер-ный магнитный резонанс и др.). Данные о строении стали и о диаграммах состояния приведены с учетом исследований последних лет. Значительно расширены разделы теории и практики термической обработки стали вновь даны главы о термической обработке стальных полуфабрикатов, выпускаемых металлургическими заводами, листов, труб и др. Имеются справочные данные режимы термической обработки различных сталей, диаграммы изотермических превращений, прока-ливаемости, изменения механических свойств в зависимости от режимов термической обработки и ряд других.  [c.2]


Кроме этого при серийном выпуске двигателей большое значение имеет стабильность магнитных и гистерезисных свойств в зависимости от колебаний состава, режима термической обработки и т. д. В качестве материалов для роторов гистерезисных двигателей применяют 1) стали, закаливаемые на мартенсит 2) литые и прессованные Fe—Ni—А1 сплавы 3) деформируемые сплавы.  [c.229]

Электромагнитные свойства сталей определяются содержанием углерода, видом и режимом термической обработки, значениями внутренних напряжений, характером механической обработки и другими факторами. Уд ель-ная электрическая проводимость и магнитная проницаемость стали тем меньше, чем выше в ней содержание углерода и чем больше углерода при закалке перешло в твердый раствор.  [c.152]

Задача о корреляции магнитных и механических свойств сталей тесно связана с установлением зависимости между магнитными свойствами сталей и режимом термической обработки. Поскольку режим термической обработки одновременно влияет и на магнитные и на механические свойства сталей, то практически во всех случаях, когда магнитные свойства коррелируют с твердостью, они также однозначно связаны с режимом термической обработки.  [c.273]

В работе [60] образование мартенсита деформации при малоцикловой усталости изучали при температурах испытания 22, 93 и 116 °С на образцах из метастабильных аустенитных сталей типа 301 и 304 в условиях растяжения-сжатия с постоянной амплитудой деформации Ае после различных режимов термической обработки (7 - закалка с 1093 °С в масло 2 - охлаждение с печью с 954 до 204 °С в течение 3 ч. В исходном состоянии стали имели однофазную аустенитную структуру. Количество образующегося мартенсита деформации определяли непрерывно в процессе испытания с помощью магнитного метода. В процессе циклирования в сталях происходило образование двух типов мартенсита а и е. Количественное соотношение между этими типами мартенсита зависит от величины амплитуды циклической деформации и температуры испытания. Чем меньше амплитуда деформации и выше температура испытания, тем меньше образуется е-мартенсита. Общее количество мартенсита деформации непрерывно возрастает с ростом числа циклов (см. рис. 6.34). При одинаковых условиях испытания в стали 304 образуется больше мартенсит по сравнению со сталью 301. В зависимости от амплитуды деформации а-мартенсит оказывает противоречивое влияние на число циклов до разрушения. При комнатной температуре испытания при амплитуде циклической де-  [c.239]


Высокие магнитные свойства и их стабильность в магнитотвердых сталях достигаются не только путем введения определенных количеств легирующих элементов, но и при соблюдении специальных режимов термической обработки. Сначала проводят нормализацию при температуре 1100—1250° С, затем нагрев под закалку до температур 830— 850° С с охлаждением в масле и, наконец, отпуск при 100° С (охлаждение на воздухе).  [c.153]

Высокие магнитные свойства и их стабильность в магнитотвердых сталях достигаются не только путем введения необходимого количества легирующих элементов, но и при соблюдении специальных режимов термической обработки. Закалка этих сталей осуществляется при температуре около 1300°С с медленным охлаждением в магнитном поле и последующим отпуском при 600°С.  [c.98]

Режимы термической обработки кислотостойких окалиностойких, жаропрочных, магнитных и других сталей  [c.270]

Режимы термической обработки горячекатаных магнитных сталей приведены в табл. 26.  [c.868]

Рекомендуемые режимы термической обработки деталей из мартенситных магнитных сталей 133]  [c.1441]

Рекомендуемые режимы термической обработки деталей из магнитных сталей  [c.937]

Рассмотрим подробнее конкретные марки магнитных сталей и сплавов, применяемых промышленностью для изготовления магнитов, и режимы термической обработки, обеспечивающие структурное состояние, обладающее наилучшими магнитными характеристиками (в данном случае с наиболее высокой коэрцитивной силой).  [c.371]

Магнитные свойства определяют на контрольных пробах, прошедших термическую обработку в защитной атмосфере по режиму для стали марки 2015—нагрев, до 830-fl0° для стали марок 2012 и 2013 —нагрев до 760 С выдержка для всех марок стали 2 ч, ох 1аж-дение до 600°С со скоростью не более 50°С/ч. Механические свойства и остальные технические требования правила приемки, методы испытания, маркировка и упаковка по ГОСТ 21427.2-75.  [c.299]

Термическая обработка в магнитном поле осуществляется с приложением сильного, постоянного или пульсирующего, электромагнитного поля в момент закалки, когда происходит превращение аустенита в мартенсит. Магнитное поле способствует дроблению и измельчению блоков, а также изменению направлений ориентации кристаллов мартенсита во всех зернах. Закалка в постоянном магнитном поле стали ХВГ повышает предел упругости при изгибе на 65%, стали Р18 на 35%. Прочностные -свойства стали, подвергнутой магнитной закалке, на 35—70 кгс/мм выше, чем у стали, закаленной обычным режимом.  [c.198]

Марка стали Химический состав в % Режим закалки Магнитные свойства Рекомендуемые температурные режимы горячей и термической обработки в С Твёрдость в состоянии  [c.161]

Искусственные окисные (оксидные) пленки на стали состоят в основном из магнитной окиси железа. Цвет окисных пленок зависит от технологии их получения, толщины, марки металла и вида механической и термической обработки, он может быть золотисто-желтым, фиолетовым, синевато-черным (цвета вороньего крыла) и глубоко черным. Толщина их зависит от состава раствора и режима обработки и лежит в пределах от 0,5 до 0,8 мк при щелочном воронении и до 10 мк при высокотемпературной обработке в водяном паре. Технология оксидирования стали разнообразна в основу ее могут быть положены химические процессы в щелочных и кислотных растворах, электрохимические процессы, а также обработка при высоких температурах в окислительных средах и др. Выбор способа оксидирования зависит от назначения оксидной пленки, точности размеров деталей и прочих факторов.  [c.187]

В первой части книги представлены некоторые вопросы теории и практики методов, разрабатываемых в Отделе физики неразрушающего контроля АН БССР, а также результа-1Ы исследования физических процессов и явлений, протекающих в материалах при воздействии переменных и постоянных полей, статических и динамических нагрузок. В области теории нелинейных процессов в ферромагнетиках получены общие соотношения для расчетов гармонических составляющих э. д. с. накладных преобразователей в зависимости от коэрцитивной силы, максимальной и остаточной индукции при наложении постоянного и переменного полей. Даны обзор по теории феррозондов с поперечным и продольным возбуждением, практические рекомендации по их применению. Приведены результаты исследований магнитостатических полей рассеяния на макроскопических дефектах, обоснована возможность их моделирования, рассмотрены режимы записи указанных полей при магнитографической дефектоскопии, обеспечивающие максимальную выяв ляёмость дефектов. Анализируется характер изменения магнитных, механических и структурных свойств высоколегированных и жаропрочных сталей в зависимости от режимов термической обработки для обоснования метода контроля по градиенту остаточного поля ири импульсном локальном намагничивании, который широко используется при контроле механических свойств низкоуглеродистых сталей.  [c.3]


Имеются также исследования по выявлению и изучению возможности контроля неразрушающими методами и для стали 12Х2МФСР (табл. 9) [33]. В данной работе, как и для стали 12Х1МФ, проведены исследования магнитных, электрических и механических свойств холоднокатаных котельных труб в зависимости от режимов термической обработки (рис.  [c.110]

Свойства стали ШХ-15 в зависимости от режима термической обработки изучались на образцах двух видов плоских (40X10X3 мм) — для измерения всех характеристик, кроме магнитных, и цилиндрических (/=150 мм, й =3 мм)—для магнитных измерений в переменном поле. Образцы были изготовлены из двух прутков стали ШХ-15 в состоянии поставки и имели следующий химический состав углерод—1,05%, марганец — 0,26 — 0,29, кремний — 0,28 — 0,30, хром — 1,49—  [c.175]

Магнитно-твердая легированная сталь (ГОСТ 6862—71). Марки, химический состав и магнитные свойства приведены в табл. 48. Сталь для постоянных магнитов выпускается в виде горячекатаных или кованых круглых и квадратных прутков диаметром и размером до 70 мм и полосой до 25X50 мм по размерам сортаментных стандартов на сортовой прокат. В ГОСТ 6862—71 приведены режимы термической обработки стали.  [c.73]

При рассмотрении сталей перлитного класса наиболее удобна классификация, разделяющая их в зависимости от содержания углерода, поскольку этим определяются такие особенности, как деформируемость и свариваемость, твердость мартенсита после закалки, а также уровень магнитных свойств. Содержание углерода определяет и режимы термической обработки, используемые для придания неаустенитным сталям оптимальных свойств для малоуглеродистых сталей это преимущественно нормализация для среднеуглеродистых, как правило, улучшение [закалка с высоким (600—700 °С) отпуском] для высокоуглеродистых (за исключением быстрорежущих) — закалка с низким (150—200 °С) отпуском. Отпуск штамповых сталей с 0,45 — 0,7 мае. % С и быстрорежущих сталей проводится при средних температурах (450—580 °С). Легирование сталей позволяет изменять ряд свойств прокаливаемость, механические и другие характеристики, термопрочность и термостойкость и, следовательно, диапазон температур возможного применения сталей.  [c.41]

У деталей с невысокой концентрацией напряжений и работающих при температуре, близкой к нормальной, наклеп увеличивает предел выносливости в среднем примерно на 30%. Влияние наклепа на выносливость жаропрочных сплавов зависит от химического состава сплава, рабочей температуры, метода создания някпепя и т д. Подробно этот вопрос рассмотрен в работе [24]. Глубину и интенсивность наклепанного слоя, как и знак остаточных напряжений, можно регулировать путем подбора режимов механической обработки и сочетаний последней с различными видами термической обработки. Например, увеличение скорости и уменьшение глубины резания, применение более мягких кругов и обильного охлаждения снижают величину и глубину распространения растягивающих остаточных напряжений. Отжиг, сквозной нагрев с последующим быстрым охлаждением или виброконтактное полирование, выравнивающее температуру в поверхностном слое, позволяют получить остаточные напряжения сжатия [26]. Наклеп и микроструктура металла деталей влияют на их электромагнитные и другие физические свойства. Так, наклеп пластин магнитонроводов уменьшает их магнитную проницаемость у крупнозернистой электротехнической стали магнитная проницаемость выше, чем у мелкозернистой, и т. д.  [c.328]


Смотреть страницы где упоминается термин Режимы термической обработки магнитной стали : [c.69]    [c.101]    [c.101]    [c.1441]    [c.279]   
Смотреть главы в:

Металловедение и термическая обработка  -> Режимы термической обработки магнитной стали



ПОИСК



2.212 Режимы обработк

2.212 Режимы обработк обработки

581 — Режимы обработки

Магнитная обработка

Магнитная стали

Режимы Термическая обработка

Режимы стали

Режимы термической обработки термической обработки стали

Стали—Обработка

ТЕРМИЧЕСКАЯ ОБРАБОТКА СТАЛ

ТЕРМИЧЕСКАЯ ОБРАБОТКА Термическая обработка стали

Термическая Режимы

Термическая стали



© 2025 Mash-xxl.info Реклама на сайте