Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Физическая природа упругой и пластической деформации

Физическая природа упругой и пластической деформации  [c.8]

Физическая природа сцепления. Под действием вертикальной нагрузки от, колеса на рельс происходит упругая деформация металла, в результате которой образуется небольшая контактная площадка, называемая контурной. Поверхности колес и рельсов имеют шероховатости и поэтому давление воспринимается отдельными микровыступами так, что площадь истинного контакта составляет всего лишь 10% контурной площадки. В результате концентрации напряжений сжатия микровыступов возникает еще и пластическая деформация металла, которая сопровождается явлением адгезии.  [c.197]


Природа условного предела текучести поликристалла в принципе аналогична природе предела упругости. Однако предел текучести является наиболее распространенной и важной характеристикой сопротивления металлов и сплавов малой пластической деформации. Поэтому физический смысл предела текучести и его зависимость от различных факторов необходимо проанализировать подробнее.  [c.142]

Приведенные в данной главе статические и геометрические уравнения применимы для любого тела независимо от его состояния, т. е. для любой сплошной среды. Однако при этом необходимо, чтобы рассматриваемое тело (среда) было сплошным как до деформации, так и после нее. Поскольку указанные уравнения не отражают физической природы исследуемого тела (упругое или пластическое и т. д.), для решения задачи о напряженном и деформированном состоянии исследуемого тела следует к полученным статическим и геометрическим уравнениям прибавить еще физические уравнения, т. е. уравнения связи между компонентами тензора напряжений и компонентами тензора деформаций.  [c.68]

Пластическая деформация приводит к значительному изменению механических, физических и химических свойств металла. В деформируемом металле с увеличением степени деформации увеличиваются все показатели сопротивления деформированию пределы упругости, пропорциональности, текучести и прочности. Увеличивается также твердость металла. Одновременно с этим наблюдается уменьшение показателей пластичности (относительное удлинение, относительное сужение, ударная вязкость) увеличивается электрическое сопротивление, уменьшаются сопротивление коррозии, теплопроводность, изменяются магнитные свойства ферромагнитных металлов и т. п. Совокупность явлений, связанных с изменением механических и физико-химических свойств металлов в процессе пластической деформации, называется упрочнением (наклепом). До настоящего времени физическая природа упрочнения полностью не выяснена.  [c.39]

Уравнения билинейной теории в случае одноосного напряженного состояния переходят в соотношения деформационной теории. Применение билинейной теории в задачах сложного напряженного состояния имеет то преимущество по отношению к другим теориям пластичности, что ее уравнения одинаковым образом интегрируются как в упругой, так и в пластической областях (ввиду одинаковых линейных зависимостей между де-виаторами деформаций и напряжений и шаровыми составляющими тензоров как в области упругих, так и в области пластических деформаций). В этом состоит удобство теории, так как возможны эффективные построения решений многих граничных задач, однако эта теория связана с некоторым упрощением их физической природы.  [c.17]


Гриффитс предполагал, что величина бГ есть поверхностная энергия твердого тела, имеющая ту же физическую природу, что и для жидкости. Однако впоследствии выяснилось, что затраты энергии при создании новых поверхностей при развитии трещины связаны главным образом с работой пластической деформации объемов материала, расположенных перед фронтом трещины. Если линейные размеры этих объемов малы сравнительно с длиной трещины, то поток упругой энергии по-прежнему можно вычислить, сообразуясь только с упругим решением, а затрату энергии на разрушение относить теперь к работе пластической деформации. В этом состоит концепция квазихрупкого разрушения, изложенная в [231]. Эта концепция позволила перейти от идеального материала в схеме Гриффитса к реальным материалам. Эффективность этой концепции состоит в том, что разрушение реальных конструкций практически всегда происходит по квазихрупкому механизму — макрохрупкий излом содержит значительные остаточные деформации вблизи поверхности разрушения. Таким образом, оказалось возможным распространить теорию разрушения Гриффитса на решение инженерных проблем. Энергия Г обеспечивает существование твердого тела как единого целого, а при образовании новых поверхностей (из начального разреза) принято считать, что энергия Г имеет поверхностную природу и поэтому может быть выражена соотношением  [c.328]

Рассмотренные до сих нор теории пластичности основывались на гипотезах формального характера реальная структура поли-кристаллического материала и хорошо известная картина пластического деформирования кристаллических зерен при этом совершенно не принимались во внимание. Такой подход имеет свои преимуп] ества и недостатки. С одной стороны, обилие законы пластичности, сформулированные для нроизвольного тела безотносительно к его физической природе, позволяют охватить единообразным способом широкий круг явлений — пластичность металлов, предельное равновесие грунтов, хрупкое разрушение горных пород и бетона и так далее. Такая общность чрезвычайно подкупает действительно, экспериментатор с удивлением обнаруживает, что макроскопическое поведение тел самой разнообразной физической природы оказывается поразительным образом сходным. Оказывается, что это поведение егце более поразительным образом может быть приблизительно хорошо описано при помощи уравнений, полученных из некоторых априорных гипотез достаточно формального характера. Но при более детальном изучении опытных данных оказывается, что при внешнем глобальном сходстве обнаруживаются и различия в поведении разных материалов. Эти различия связаны с тем, что микромеханизмы не только неунругой, но даже упругой деформации не одинаковы. Поэтому естественно стремление к тому, чтобы положить в основу теории пластичности некоторые физические представления о протекании пластической деформации. Нужно признать, что мы еш е далеки от возможности построения макроскопической теории, основанной на анализе и описании процессов, происходящих на микроуровне. Теория скольжения Батдорфа и Будянского, которая будет схематически изложена ниже, отнюдь не может быть названа физической теорией. Однако положенные в ее основу гипотезы в определенной мере отражают процессы, происходящие внутри отдельных кристаллических зерен, хотя и не воспроизводят их точным и полным образом. Пластическая деформация единичного кристалла происходит за счет сдвига в определенной кристаллографической плоскости в определенном нанравлении. Совокупность плоскости скольжения и направления скольжения в этой плоскости называется системой скольжения. Система скольжения задается парой ортогональных еди-  [c.558]

Гриффитс предполагал, что величина бГ есть поверхностная энергия твердого тела, имеющая ту же физическую природу, что и для жидкости. Однако впоследствии выяснилось, что затраты энергии при создании новых поверхностей при развитии трещины связаны главным образом с работой пластической деформации объемов материала, расположенных перед фронтом трещины. Если линейные размеры этих объемов малы сравнительно с длиной трещины, то поток упругой энергии по-прежнему можно вычислить, сообразуясь только с упругим решением, а затрату энергии на разрушение относить теперь к работе пластической деформации. В этом состоит концепция квазихрункого разруше-  [c.28]


Реакция материала на импульсную нагрузку определяется конкретной физической природой материала и реальным процессом нагружения (законом изменения напряжений или деформаций во времени). Для большинства конструкционных материалов имеется широкий круг режимов нагружения (для металлов — упругое или упруго-пластическое деформирование в определенных пределах по деформации), не вызывающих нарушения сплошносги материала, что допускает использование методов механики сплошной среды. Достижение критических условий нагружения сопровождается развитием процессов разрушения (зарождением микротрещин и их интенсивным развитием), ведущих к нарушению сплошности. Изучение таких процессов требует применения специфических методов экспериментальных исследований и анализа результатов. Следовательно, реакция материала на действие импульсной нагрузки может  [c.9]

Поскольку в процессах обработки давлением силы трения возникают между упруго и пластически деформируемыми те-ламиг то вместо трения покоя и трения движения рассматривают трение при упругом состоянии тел и трение при пластическом деформировании одного из компонентов. Физическая природа трения в условиях ковки и штамповки усложнена неравномерностью пластических деформаций в заготовке и структурными изменениями в металле.  [c.21]

В книге изложены основные закономерности изменения циклической и коррозионной прочности титановых сплавов в зависимости от химического состава, структуры и окружающей среды. Детально рассмотрен процесс коррозионного растрескивания сплавов на основе титана и физическая природа этого явления в различных агрессивных средах. Анализ малоцикловой долговечности проведен на основе исследования процесса микронеоднородности протекания пластической деформации в упруго-пластической области нагружения. Многоцикловая усталость рассмотрена с использованием статистических методов анализа. Особое внимание уделено влиянию различных охрупчивающих факторов, состояния поверхности и коррозионных сред на циклическую долговечность, а также методам повышения циклической прочности.  [c.2]

Качество поверхностного слоя — шероховатость, физическое состояние поверхностного слоя и его напряженность — есть следствие многочисленных изменений в кристаллической решетке, суб- и микроструктуре металла поверхностного слоя, вызванных одновременным протеканием различных физических явлений в зоне резания (упруго-пластическая деформация и разрушение, диффузионные процессы и др.). Поскольку размах и интенсивность этих процессов во многом зависят от методов и режимов обработки, а также от природы обрабатываемого материала, целесообразно результаты исследования качества поверхностного слоя рассматривать раздельно для жаропрочных сплавов, стали ЭИ96 и титанового сплава ВТ9 в зависимости от методов обработки, разделенных на три группы  [c.89]

Н. Н. Давиденков [19] сделал попытку вскрыть механизм рассеяние энергии колебаний. Опираясь на опыты А. Ф. Иоффе [26] с неиоврежденными монокристаллами кварца, обнаружившими совершенную упругость, автор приходит к заключению, что физическая природа гистерезиса связана с неоднородностью поликристалла. Согласно его предположению, различно ориентированные зерна неодинаково деформируются из-за анизотропности физических свойств. Поэтому в отдельных зернах и на их границах могут произойти пластические деформации, чем и определяется наличие петель гистерезиса. Связь между напряжениями и деформациями, описывающими петлю гистерезиса при симметричном цикле колебаний, Н. И. Давн-денков представил в следуюи1ем виде  [c.104]

В статье Н. Н. Давиденкова [Л. 8] была сделана попытка вскрыть механизм рассеяния энергии колебаний и образования петли гистерезиса. Ссылаясь на опыты А. Ф. Иоффе с неповрежденными монокристаллами кварца, обнаружившими совершенную упругость, Н. Н. Давиденков заключает, что физическая природа гистерезиса связана с неоднородностью поликристаллического агрегата. По его предположению, различно ориентированные зерна неоднородно деформируются вследствие анизотропности физических свойств. В силу этого в отдельных зернах и на границах зерен могут произойти пластические деформации, которые и определяют нали- чие петли гистерезиса.  [c.13]

Кристаллографическая природа пластической деформации, являющаяся следствием движения дислокаций, рассмотрена в работе Мизеса [4], который показал, что для тогр чтобы осуществить наблюдаемое изменение формы тела при неизменном объеме, необходимо иметь пять независимых компонент деформации. Для кристаллического тела это означает необходимость действия пяти различных систем скольжения. Выбор пяти систем скольжения (из многих кристаллографически эквивалентных октаэдрических систем скольжения) отвечает принципу минимальной работы. Отсюда следует, что физическая природа предела текучести (в нашем случае - упругости) конкретных марок технических металлов, определяющее критическое напряжение сдвига для взаимного скольжения внутри поликристаллического агрегата, зависит в основном от состояния границ беспорядочно ориентированных зерен и их размеров.  [c.24]

Термин коэффициент Пуассона использован в этом случае для отношения поперечного сужения к продольному растяяхению, независимо от того, являются ли они упруго восстанавливаемыми деформациями или результатом непрерывно нарастающих деформаций или течения жидкости. В таком обобщении нет вреда, если а) это сделано сознательно, с пониманием, что в каждом случае это различные физические величины, б) различные обозначения вводятся для различных величин и в) понимается, что эти коэффициенты являются независимыми величинами, т. е. один (например, упругий) может иметь значение, скажем, 0,3, тогда как другой (например, пластический) может быть равен 0,5. Можно называть все эти различные величины коэффициентами Пуассона, но следует указывать природу каждого при помощи индексов, используя I для жидкостного, пл для пластического и d для деформационного, тогда как v без индекса будет означать обычный упругий коэффициент.  [c.206]



Смотреть страницы где упоминается термин Физическая природа упругой и пластической деформации : [c.22]   
Смотреть главы в:

Обработка металлов давлением и конструкции штампов Издание 2  -> Физическая природа упругой и пластической деформации



ПОИСК



Деформация пластическая

Деформация упругая

Деформация упруго-пластическая

Пластическая деформаци

Природа

Физическая природа ЛКС



© 2025 Mash-xxl.info Реклама на сайте