Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Технология сварки в особых условиях

Технология сварки в особых условиях  [c.684]

При разработке технологии сварки жаропрочных материалов особую трудность представляет, как правило, выбор сварочных материалов (электродов и сварочных проволок), обеспечивающих необходимые свойства металла шва. Для работы при высоких температурах металл шва, кроме необходимого уровня механических свойств и технологической прочности, должен обеспечивать также достаточную стабильность структуры и свойств при заданных температурах, обладать необходимым сопротивлением ползучести и жаростойкостью, а также рядом других свойств в соответствии с условиями работы данного узла. При этом критерии оценки пригодности того или иного типа сварочных материалов будут существенно зависеть от назначения данного узла конструкции. Так, например, для сварных конструкций камер сгорания газовых турбин пригодность тех или иных электродов будет определяться прежде всего жаростойкостью металла шва. Ряд сварных узлов турбин (рабочие лопатки, роторы и другие) могут работать под воздействием динамических знакопеременных напряжений. Поэтому для данных сварных соединений должна быть проверена их усталостная прочность.  [c.21]


Технология высокочастотной сварки спиральношовных тонкостенных труб с контактным подводом тока (рис. 105) разработана в 1963—1965 гг. [12]. Как и при сварке спиральношовных труб большого диаметра, качество соединения зависит от геометрии свариваемых кромок на участках нагрева и осадки. При сварке спиральношовных тонкостенных труб геометрия кромок регулироваться не может, и поэтому для обеспечения оптимальных условий сварки необходимо особое внимание уделять выбору исходных параметров формовки углу формовки и ширине ленты, используемой для изготовления труб [9.  [c.170]

Свариваемостью называют свойство металла пли сочетания металлов образовывать при установленной технологии сварки соединения, отвечающие требованиям, обусловленным конструкцией и эксплуатацией изделия. На свариваемость стали наибольшее влияние оказывает ее химический состав. Как известно, сталь в основном состоит из железа с неизменной примесью углерода. По содержанию углерода стали разделяются на низкоуглеродистые (до 0,25% С) среднеуглеродистые (0,25—0,4 % С) высокоуглеродистые (0,46—0,9 % С). Хорошо свариваются низкоуглеродистые стали, широко применяемые для строительных конструкций. Сварка среднеуглеродистых сталей возможна при условии соблюдения особой технологии, включающей, как правило, предварительный прогрев и последующую термообработку, устраняющие закалку соединения. Ручная дуговая сварка высокоуглеродистых сталей не рекомендуется. Она возможна только при соблюдении технологии, которая, однако, не всегда обеспечивает получение соединения, равнопрочного основному металлу.  [c.125]

Оптимизация технологии сварки способствует уменьшению тепловой перегрузки электрода со стабильной защитой от воздействия окружающей среды. Для уменьшения перегрева регламентируется продолжительность выполнения сварки. Следует избегать коротких замыканий электрода при сварке, обратив особое внимание на условия выполнения сварного соединения (труднодоступные места, сварка в пространственном положении и т.д.).  [c.106]

Определение свариваемости. Под свариваемостью понимают свойство металла или сочетания металлов образовывать при установленной технологии сварки соединение, отвечающее требованиям, обусловленным конструкцией и эксплуатацией изделия. Например, для сварных строительных конструкций, работающих в особо тяжелых условиях и подвергающихся непосредственному воздействию динамических или вибрационных нагрузок, согласно Строительным нормам и правилам (СНиП), разрешается применять только определенные марки низкоуглеродистой и низколегированной стали, так как именно стали этих марок имеют свойство образовывать при сварке соединения высокого качества, что необходимо для нормальной, безаварийной эксплуатации конструкций.  [c.36]


Для второй группы сварных конструкций разнородных сталей, работающих при температурах выше 400—450° С, характерным является возможность развития при эксплуатации в зоне сплавления переходных прослоек диффузионного характера, а также вероятность появления при периодических пусках и остановках знакопеременных пластических деформаций, снижающих работоспособность изделия. Такие сварные соединения могут проявлять также склонность к малопластичным разрушениям в зоне сплавления в условиях длительной работы при высоких температурах. Поэтому при изготовлении данных конструкций требуется особо тщательный выбор материалов, технологии сварки и анализ работоспособности изделия.  [c.189]

Для оборудования, эксплуатируемого в условиях возможности сероводородного растрескивания, не рекомендуется применять при сварке низколегированных сталей аустенитные электроды, дающие швы с особо высокой склонностью к этому виду разрушения. Перспективным (нуждающимся в уточнении технологии) способом защиты от сероводородного растрескивания сварных швов представляется их пескоструйная или дробеструйная обработка, создающая наклеп в поверхностном слое.  [c.60]

В настоящей книге сделана попытка комплексного рассмотрения вопросов электродных сплавов, конструкции, технологии изготовления и эксплуатации электродов. Особое внимание уделено влиянию электродов на формирование сварных соединений и их качество. В книге рассматривается использование электродов при точечной и роликовой сварке и не приводятся сведения об электродах рельефной и стыковой сварки, так как эти электроды по условиям их работы существенно отличаются от электродов точечных и роликовых машин. В данной работе изложены в основном результаты работы авторов в области электродов для контактной сварки.  [c.3]

Применительно к сварке каждого слоя требуется особая технология сварки (присадочные материалы, условия и режимы сварки), а также следует учитывать наличие науглероженной зоны в плакирующем слое. Кроме того, возможно развитие диффузионных процессов металла шва, в особенности когда применяется термическая обработка сварных конструкций или узлов. Поэтому при сварке двухслойной стали особенно важны такие факторы, как состав и свойства стали, реакция каждого слоя на термический цикл при сварке, форма подготовки кромок под сварку, применяемые электроды, (в случае ручной сварки), сварочная проволока и флюс (при автоматической сварке), условия процесса сварки, а такжедругиефакторы,определяющие качество сварных соединений.  [c.278]

Конструкции, сваренные из разнородных сталей, называют комбинированными. Они применяются в тех случаях, когда условия работы отдельных частей конструкции отличаются температурой, агрессивностью среды, особыми механическими воздействиями (износ, знакопеременное нагружение и т.п.). Если изготовление всей конструкции из стали со специальными свойствами нецелесообразно по технико-экономическим показателям, при проектировании предусматривают комбинированный вариант, а при производстве разрабатывают и применяют специальн5ТО технологию сварки заготовок из разнородных сталей или поверхностную наплавку отдельных частей требуемым составом. Пример комбинированных сварных конструкций приведен на рис. 13.1, а характеристики их составляющих - в табл. 13.2.  [c.174]

Особое значение в последнее время приобретают вопросы технологии сварки легированных и высоколегированных разнородных сталей для различных условий работы, например при низких и высоких температурах, вопросы специальных видов наплавки износостойких, коррозионно-стойких и других армирующих слоев, вопросы эксплуатации сварных соединений легированных и нели-гированных сталей в коррозионно-активных и наводороживаю-щих средах. Обеспечение высокой надежности таких сварных соединений должно основываться и на обеспечении кадлежащего протекания процессов и явлений теоретического и прикладного металловедения.  [c.3]


Использование синергетических принципов при разработке новых неравновесных технологий открыло поистине фантастические возможности формирования профилей изделий и сварки путем управления тепловыми потоками при воздействии на металл концентрированными потоками энергии (КПЭ). Следует отметить, что КПЭ для обработки и сварки металлов используется уже несколько десятилетий, но при разработке технологических процессов не учитывались особые свойства системы КПЭ—металл, находящейся вдали от термодинамического равновесия. Их использование позволяет оптимизировать процессы путем доведения их до самоорганизующихся. Эти возможности связаны с тем, что при воздействии на. металл КПЭ (струи плазмы, лазерные, электронные и другие лучи) теплофизические процессы, происходящие в нем, целиком определяются температурным полем [571]. Однако вид пространственно-временной структуры при воздействии КПЗ зависит от технологических параметров. Самоорганизующиеся процессы отвечают условиям воздействия, при которых переходы устойчивость—неустойчивость—устойчивость определяются внутренними динамическими взаимодействиями между подсистемами, контролируемыми автоколебаниями. Последние относятся, как известно, к нелинейным процессам. Существенной особенностью воздействия внешней периодической силы на автоколебательную систему является существование областей синхронизации автоколебаний внеигаим периодическим сигналом.  [c.359]

Подкрановые балки обычно выполняют в виде сварного двутавра с ребрами жесткости. Условия их работы предъявляют вполне определенные требования к конструктивному оформлению и технологии выполнения сварных соединений. При нагружении сварного двутавра только продольным изгибающим моментом такие концентраторы, как подрез стенки или непровар корня поясного щва, особой опасности не представляют, так как располагаются параллельно нормальным и касательным напряжениям. Однако сечения подкрановой балки дополнительно испытывают периодическое нагружение сосредоточенной силой от колеса крана, передаваемоег с рельса на верхний пояс и через поясные швы на стенку балки. Кроме того, при нарушениях симметрии рельса относительно оси балки возникает дополнительный момент в поперечном направлении, воспринимаемый поясными швами и стенкой. В этом случае непровар корня поясного шва или подрез стенки оказываются расположенными поперек силового потока и поэтому могут служить причиной возникновения усталостных трещин, что подтверждается многолетней эксплуатацией таких балок. Следовательно, конструктивные элементы подобного типа целесообразно выполнять с полным проплавлением стенки и сварку поясных швов производить в положении в лодочку для предотвращения подрезов. Установка и приварка ребер жесткости производится после выполнения поясных швов наклоненным электродом. К концам подкрановой балки могут быть приварены планки, нижние грани которых опираются на колонны, задавая положение балки по высоте. Поэтому установка этих планок с монтажными отверстиями должна быть выполнена достаточно точно. Для этой цели можно использовать сборочный фиксатор 1 (рис. 16-30) в виде углового шаблона, на одной из полок которого имеются четыре отверстия. Расположение этих отверстий и размер с соответствуют проекту. Требуемая высота балки Я на опоре обеспечивается совмещением отверстий фиксатору 1 с монтажными отверстиями планки 3 на пробках 2 и прижатием горизонтальной планки фиксатора к верхнему поясу балки.  [c.400]


Смотреть страницы где упоминается термин Технология сварки в особых условиях : [c.162]    [c.372]    [c.622]   
Смотреть главы в:

Технология электрической сварки металлов и сплавов плавлением  -> Технология сварки в особых условиях



ПОИСК



Особые

Особые условия

Сварка в особых условиях

Технология сварки



© 2025 Mash-xxl.info Реклама на сайте