Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Термореактивные пластмассы, их свойства и применение

Требования, предъявляемые к материалу поверхности вкладыша, более высокие, чем к материалу поверхности вала, -так как, помимо хороших антифрикционных свойств, он должен обеспечивать минимальный износ наиболее нагруженной части. С этой целью антифрикционный слой наносят на поверхность вала, а вкладыш подшипника делают из твердого материала в результате поверхность вала изнашивается равномерно по всей окружности, сохраняя свою цилиндрическую форму, а вкладыш подшипника изнашивается незначительно. Такие пары называются обратными. В практике находят применение втулки с наружной облицовкой пластмассой, насаживаемые на вал могут использоваться термореактивные пластмассы (фенол-формальдегидные смолы с наполнителями из текстильной крошки, эпоксидные смолы) и термопластичные пластмассы — полиамиды, полиформальдегид и др.  [c.122]


Термореактивные пластмассы не могут после затвердевания при последующих нагревах размягчаться. Эта группа пластмасс обладает стабильностью физико-химических свойств, что предопределило их более широкое применение в промышленности.  [c.650]

Термореактивные пластмассы с порошковыми и волокнистыми наполнителями слоистые пластмассы состав, свойства, области применения.  [c.28]

Существует множество неметаллических материалов, которые успешно могут заменить металлы и их сплавы. Все более широкое применение получают различные виды полимеров (пластмасс), которые благодаря своим особым физическим и механическим свойствам позволяют использовать их для литья под давлением, прессования, формовки из листов, сварки, склеивания, наплавления и других технологических процессов изготовления деталей. Полимерные материалы (пластмассы) подразделяются на две группы термопластичные и термореактивные.  [c.228]

Для устранения этого недостатка необходимо частицы фто-ропласта-4 располагать ближе к поверхности трения. Это возможно осуществить при применении термореактивных лаков, наполненных фторопластом-4Д некоторые из них разработаны в НИИПП, Применение этих лаков позволит улучшить свойства антифрикционных материалов, полученных на основе термореактивных пластмасс.  [c.38]

При расчете деталей из жестких термореактивных пластмасс, если напряжетгое состояние вызывает статическая кратковременная нагрузка и вязко-упругие свойства не успевают проявиться, допустимо применение закона Гука.  [c.141]

До недавнего времени термопласты имели ограниченное применение (преимущественно — в высокочастотной технике) и занимали небольшой объем в мировом производстве пластмасс. В последние годы области применения термопластов расширились и рост их производства приобрел значительно более высокие темпы. Это связано с появлением новых типов термопластичных материалов, которые по нагревостойкости до тигли или превзошли термореактивные пластмассы на основе фенолформальдегидных смол. Важное значение имеют механические свойства и химическая стабильность некоторых термопластов, их высокие электроизолируюи и свойства и технологичность.  [c.100]

Переход поликонденсационных термореактивных смол в термостабильную форму сопровождается образованием низкомолекулярных побочных продуктов, которые при высоких температурах формования изделий (140—180 ) находятся в газообразном состоянии. Образующиеся побочные продукты не должны быть токсичными, не должны вызывать разрушения наполнителя или коррозии металлических форм, в которых происходит формование изделий. Применяемые в производстве пластических масс поликонденсационные термореак-тивные смолы фенольно-формальдегидные, амино-формальдегидные, полисилоксановые, переходят в термостабильную форму, выделяя воду. Однако при указанных температурах формования в газообразное состояние переходят и не вошедшие в реакцию низкомоле-кулярные вещества, сохранившиеся в смоле или введенные в нее (фенолы, формальдегид, продукты распада меламина, мочевины, ингибиторы или катализаторы процесса отверждения). Эту смесь паров, среди которых основную массу составляют пары воды, выделяющиеся при отверждении термореактивных пластмасс, называют летучими . Выделение летучих затрудняет процесс формования изделия, увеличивает усадку, ухудшает его диэлектрические свойства, ускоряет старение материала. С этой точки зрения применение термореактивных смол, отверждающихся без выделения летучих (полиэфиры, эпоксидные смолы), представляет особенный интерес.  [c.36]


Эпоксидные смолы находят применение для получения блок-полимеров с фенолоформальдегидными, полиамидными, полиэфирными и кремнийорганическими смолами, В сочетании с последними эпоксисмолы дают смолы с повышенной нагревостойкостью, улучшенными механическими характеристиками и пониженной температурой отверждения. Отвержденные эпоксидные смолы обладают хорошей нагревостойкостью, мало гигроскопичны, имеют малую усадку при отверждении. Ценным свойством их является очень высокая адгезия к металлам (особенно легким сплавам), керамическим материалам, стеклу, термореактивным пластмассам, благодаря чему эпоксидные смолы широко применяются в качестве склеивающего материала. Плохую адгезию имеют эпоксидные смолы к термопластичным материалам. Они применяются также для высококачественной монолитной изоляции (пропитка и заливка) различных деталей и аппаратов, в том числе высоковольтных, например измерительные трансформаторы тока. Кроме того, эпоксидные смолы применяются для производства слоистых пластиков.  [c.176]

При решении вопроса о применении отдельных видов пластиков следует учитывать их специфические особенности. Так например, слоистые пластики (текстолит, гетинакс, дельта-древесина или лигнофоль и др.) анизотропны, т. е. имеют различные свойства в различных направлениях, зависящие главным образом от расположения слоёв и соотношения наполнителя и смолы в готовом материале. Высокое сопротивление воздшштвию вибрационных нагрузок хотя и выгодно отличает пластмассы от металлов, однако повышенная хрупкость (и не всегда достаточная прочность) прессованных деталей из порошкообразных пластмасс ограничивает их применение в силовых элементах конструкций. Термореактивные, а в особенности термопластичные материалы подвержены пластической деформации (текучести на холоду) под влиянием постоянно действующих нагрузок физико-механические свойства большинства пластиков сильно зависят от температуры и влаасности среды, в которых должен работать материал размеры деталей из пластмасс могут изменяться не только под влиянием постоянно действующих нагрузок и окружающей среды, но и в результате изменений, происходящих в процессе старения.  [c.293]

Общие сведения (257). Основные физико-механические свойства пластмасс (258). Пластмассы в машиностроения (260). Применение пластмасс в машиностроении (268). Сравнительные физико-меха-пические свойства некоторых конструкционных материалов (270). Признаки, по которым можно определить вид пластмассы (270). Физико-механические показатели термопластических материалов (272). Механические свойства полиамидных смол отечественных марок (274). Антифрикционные свойства деталей из капрона в зависимости от вида термической обработки (274). Антифрикционные свойства капрона и металлических антифрикционных материалов (274). Примерное назначение термопластических материалов (275). Сравнительные физико-механические показатели материалов, применяемых для изготовления подшипников (278). Предельные нагрузки па подшипники из пластмасс (280). Физико-механические свойства термореактивных материалов (280). Примерное назначение прессовочных материалов (282). Физико-мёханические свойства конструкционных слоистых пластиков < (286). Фиаико-механические показатели стеклопластиков (288). Примерное назначение термореактивных материалов (288).  [c.536]

Малая плотность, демпфирующая способность, стойкость к агрессивным средам, высокие электро-, тепло-, звукоизоляционные и фрикционные свой- ства, высокая удельная прочность, простота переработки в изделия и другие ценные физико-механические свойства способствуют широкому применению пластмасс в машиностроенпи. По поведению при нагревании пластмассы делят на две основные группы термореактивные (реактопласты) и термопластические (термопласты). Реактопласты при нагревании вначале переходят в вязко-гекучее состояние, а затем превращаются в необратимые, неплавкие и нерастворимые вещества.  [c.150]

В настоящее время имеется большое количество различных про-мышленных-пластмасс, которые могут быть использованы в сооружениях, подвергающихся интенсивному химическому воздействию. К числу таких пластмасс принадлежат термопластичные и термореактивные смолы. Для создания сварных пластмассовых конструкций особенно важны непластифицированный поливинилхлорид и полиэтилен. Эти пластмассы имеют наиболее широкое применение в ряде случаев, однако, применяются другие полимерные материалы, характеризующиеся необходимым комплексом свойств. Подобно тому, как нет единого металла, который мог бы применяться для всевозможных целей, не имеется также и такой одной пластмассы, которую можно было бы рекомендовать для применения во всех случаях. В тех случаях, когда требуется достигнуть высокой сопротивляемости ударной нагрузке или вибрации, а также, когда обязательным условием является облегченность конструкции, часто пpи [eняeт я поли-10  [c.10]


Термореактивные композитные пластмассы. Фенопласты— материалы, получаемые на основе фенолоформальдегид-ной смолы с наполнителем в виде древесной или кварцевой муки выпускают в виде-прессовочных порошков отличаются постоянством свойств не размягчаются при нагреве, стойки к воздействию горячих масел, не горят. Основное применение — рукоятки электро- и радиодеталей, детали бытового назначения.  [c.46]

Стеклотекстолит. Исключительно высокой механической прочностью обладают стеклопластмассы, изготовленные на основе стекловолокон и различных смол. Стеклотекстолит относится к группе армированных пластмасс. Это новый тип конструкционного материала, обладающий специфическими ценными свойствами. Стеклотекстолит является комбинацией синтетической смолы, в большинстве случаев термореактивной и усиливающего наполнителя, чаще всего стекловолокна, которое может быть частично или полностью заменено асбестом, а также природным или синтетическим органическим волокном. Применение поликонденсационных смол для изготовления указанных материалов придает последним высокую механическую прочность и химическую стойкость. Трубы из стеклотекстолита со связующим из модифицированной фенолоформальдегидной эпоксидной смолы выдерживают повышенное давление при температуре до 200°.  [c.422]

Классификация полимерных материалов. Термопластические полимерные материалы ( полиэтилен, полиамид, поливинилхлорид и др. ). Их свойства, состав, области применения. Термореактивные полимерные материалы. Паро-пласты и пенопласты. Пластмассы с твердыми, порошковыми, волокнистыми и листовыми наполнителями.  [c.11]


Смотреть страницы где упоминается термин Термореактивные пластмассы, их свойства и применение : [c.33]    [c.204]   
Смотреть главы в:

Технология металлов и других конструкционных материалов  -> Термореактивные пластмассы, их свойства и применение



ПОИСК



Пластмасса термореактивная

Пластмассы Свойства

Пластмассы термореактивные Свойства

Пластмассы — Применение



© 2025 Mash-xxl.info Реклама на сайте