Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Идентификация модели динамического объекта

Идентификация модели динамического объекта  [c.354]

Средства цифровой техники, т. е. управляющие ЭВМ и микропроцессоры, открывают значительно более широкие возможности для построения адаптивных регуляторов (или адаптивных алгоритмов управления), нежели применявшиеся до недавних пор аналоговые вычислители. Стремительное развитие технологии производства цифровых интегральных схем создало предпосылки для практического внедрения сложных законов управления, которые либо вовсе нельзя реализовать с помощью аналоговой техники, либо принципиально возможно, но лишь ценой неприемлемых затрат. Следует отметить, что сама форма описания регуляторов и моделей динамических объектов в дискретном времени обладает существенными преимуществами по сравнению с описанием в непрерывном времени, позволяя упростить как синтез алгоритмов, так и их техническую реализацию. Для создания адаптивных алгоритмов управления, отвечающих требованиям практики, большое значение имели также результаты новых теоретических исследований в области цифрового управления и идентификации, проводившихся начиная примерно с 1965 г. Не удивительно поэтому, что интерес к проблемам адаптивного управления за последние 10 лет существенно возрос. Немало статей по вопросам адаптации публиковалось и в 1958—1968 гг. Однако большинство из них было посвящено методам обработки непрерывных сигналов с помощью аналоговых вычислителей. Обзоры первых работ по адаптивным системам можно найти в [22.1] — [22.10]. Сложность реализации систем этого типа и, самое главное, отсутствие универсальных методов их построения  [c.348]


Динамическая модель. Одним пз способов построения диагностической модели механического объекта является математическое описание связи между структурными и диагностическими параметрами с помощью дифференциальных или алгебраических уравнений (типичная задача идентификации).  [c.386]

Методы идентификации динамических объектов [46] включают в себя самые разные алгоритмы, предназначенные для получения математических моделей, учитывающих динамические свойства  [c.458]

Необходимость решения задачи идентификации объекта, т. е. построения математической модели диагностируемого объекта на основании анализа колебательных процессов возникает в том случае, когда ненаблюдаемые дефекты системы могут изменить характер динамических процессов в системе.  [c.707]

Методы текущей идентификации динамических объектов и моделей случайных сигналов  [c.352]

Для решения конструкторско-исследовательских задач необходимо выполнение большого числа работ, связанных с идентификацией математических моделей объектов, разработкой норм и требований к динамическим характеристикам, рекомендаций о повышении динамического качества и снижению шума станков и др.  [c.38]

На основе рассмотренных в этой книге методов проектирования алгоритмов управления с обратными и прямыми связями могут быть разработаны программы, позволяющие проектировать алгоритмы управления в диалоговом режиме. Необходимым предварительным условием является, конечно, знание соответствующих математических моделей объектов управления и, возможно, моделей сигналов. Разработка моделей может осуществляться как теоретическими методами, так и с помощью процедуры идентификации, описанной в разд. 3.7.4. Теоретические методы построения модели должны использоваться, если объект не доступен для исследования, например находится в стадии разработки. Однако существует ряд естественных факторов, ограничивающих точность теоретической модели. К ним относятся ограниченная точность получаемых данных и параметров объекта, упрощающие допущения, используемые при выводе уравнений модели, а также неточности задания моделей привода, регулирующих элементов и датчиков. В частности, для многих промышленных объектов (химической, энергетической и тяжелой промышленности) физические или химические законы либо неизвестны, либо не могут быть выражены с помощью разумного числа математических уравнений. Поэтому, измеряя динамические характеристики существующего объекта, т. е. используя методы идентификации, можно построить модель значительно быстрее и с большей степенью точности. Это может быть выполнено вне связи с объектом на автономной ЭВМ либо, если вычислитель уже состыкован с объектом управления, в режиме нормальной эксплуатации. Поскольку для расчета алгоритмов управления более всего удобны параметрические модели объектов управления, применимы методы  [c.483]


В основе выбора моделей для расчетов динамических процессов в ФС лежат два противоречивых требования максимальная достоверность описания исследуемых явлений и минимальная сложность модели. Первое требование обеспечивается в результате анализа известных расчетных и экспериментальных исследований, а также дополнительными целенаправленными исследованиями рассматриваемого объекта. Для обеспечения второго требования расчетные модели упрощаются на основании анализа парциальных систем [3] с последующей идентификацией на основе экспериментальных данных.  [c.135]

Для реализации такого подхода фундаментом модели ДО (систем технического и диагностического обслуживания ГПА) предлагается использовать классификатор поузловых конструктивов энергомеханического оборудования. Особенность модели заключается в возможности идентификации внутреннего состояния УКЭ, учета времени восстановления объекта исследования в зависимости от тяжести дефекта и типа заменяемого поузлового конструктива. Для градации тяжести дефекта разработаны классификатор вины и классификатор последствий отказов. Решение поставленной оптимизационной задачи осуществляется методом динамического программирования. Полученный результат обобщен в виде методики оптимального резервирования заменяемых УКЭ, где в качестве ограничивающих факторов используются требуемая надежность УКЭ, время его восстановления и максимальный объем отпущенных средств, которые могут быть затрачены для достижения заданного уровня надежности.  [c.226]

Задачей идентификации является экспериментальное определение характеристик динамических объектов и связанных с ними сигналов. Оценивание параметров системы производится в рамках математической модели определенного класса. При этом различие между реальным объектом или сигналом и соответствующей математической моделью должно быть по возможности минимально [ЗЛ2], [3.13]. Текущей ыЗеятификачаей будем называть процедуру определения параметров путем обработки на ЭВМ данных, которые поступают от объекта идентификации непосредственно в процессе его функционирования. В некоторых случаях измеряемые сигналы объекта первоначально накапливаются в виде блоков или массивов информации. Обработку такого типа принято именовать пакетной. Если же сигналы обрабатываются по истечении каждого такта квантования, то говорят, что обработка ведется в реальном масштабе времени.  [c.352]

Идентификация расчетной модели осуществляется на стадии доводки опытной конструкции. В этом случае проводится идентификация расчетной модели и объекта как по частотам, так и по амплитудам колебаний. Для этого корректируются жест-костные и диссипационные параметры динамической модели.  [c.326]

При идентификации динамических объектов источниками информации являются входные и выходные сигналы объекта, при этом последний рассматривается как система, преобразующая входные сигналы в выходные. Такой системой, называемой иногда черным ящиком , является математическая модель объекта, как правило, не дающая представления о протекании физических процессов в нем, однако позволяющая проанализировать выходные сигналы во всем их рабочем диапазоне без нарушения режимов нормальной эксплуатации объекта.  [c.43]

Результаты автоматизированного эксперимента целесообразно использовать при построении и идентификации математической модели, диагностике технического состояния объекта, разработке рекомендаций по повьш1ению динамического качества конструкции, проведении сравнительных испытаний объектов новой техники, разработке и совершенствовании методов и средств анализа вибрационных сигналов.  [c.124]

На основании сказанного выше очевидно, 4to под построением динамической модели одномерного технологического процесса понимают нахождение оператора, ставящего в соответствие входную X (s) и выходную Y (t) функции объекта. При этом существенно, что при идентификации оператор объекта А (t) в формуле (10.1) находится по результатам измерений X (s) и К (t), полученным в процессе нормального функционирования объекта. Результаты измерений X (s) и У t) рассматривают как реализацию случайных функций X (s) и У (t). По реализациям X (s) и У (О ставится задача определения не самого оператора А , а его оценки A t, которая и используется в качестве характеристики неизвестного истинного оператора Естественно потребовать при этом близости в некотором смысле оценки At к истинному значению оператора Af. Графическая интерпретация сказанного иллюстри- Ряс. 10.2. Принципиальная схема руется на рис. 10.2. Имеется идентификации объекта  [c.321]


Математическая статистика рассматривает класс статических моделей. Методы идентификации разрабатываются для построения и уточнения математических моделей систем и объектов автоматического управления более широкого класса, включающего динамические модели (см. рис. 42). Поэгому основное развитие теория идентификации получила на базе методов теории автоматического управления [129]. Имеется тенденция использования методов математической статистики, например регрессионного анализа, совместно с методами теории автоматического управления в задачах испытания динамических систем [130].  [c.161]

ЭВМ может одновременно осуществлять планирование, обра ботку результатов испытаний и самонастройку параметров математической модели объекта испытаний в соответствии с результатами испытаний. В этом случае испытательные установки обычно реализуют поисковые алгоритмы идентификации динамических систем (рис. 101). Поиск параметров математической модели производится путем параллельного испытания объекта и его математической модели. Вычисляется критерий оптимальности Ф, который представляет собой оценку близости параметров модели и параметров объекта. Далее рассчитбтаются параметры математической модели из условия минимума Ф. Этот итерационный процесс заканчивается как только будет достигнуто минимальное значение критерия оптимальности Ф.  [c.163]

Процесс проектирования СОЭИ сопряжен с необходимостью решения вопросов методического характера создания систем управления в целом. К их числу относятся проблемы создания методик прогнозирования элементов АСУ и их параметрической оценки многомерного описания объекта управления с учетом многочисленных поведенческих (типа вход-выход) характеристик системы исследования процессов принятия решений и. идентификации проблемных ситуаций, возникающих в процессе управления определения множества целей и альтернатив их достижения разработки математических моделей управления, адекватных динамическим условиям и параметрам объекта в разрезе фаз уп-  [c.8]


Смотреть страницы где упоминается термин Идентификация модели динамического объекта : [c.18]    [c.511]    [c.168]    [c.377]    [c.494]   
Смотреть главы в:

Цифровые системы управления  -> Идентификация модели динамического объекта



ПОИСК



Идентификация

Идентификация модели

Идентификация объектов

Методы текущей идентификации динамических объектов и моделей случайных сигналов

Модель динамическая



© 2025 Mash-xxl.info Реклама на сайте