Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Линейная теория несущей поверхности

ЛИНЕЙНАЯ ТЕОРИЯ НЕСУЩЕЙ ПОВЕРХНОСТИ 39  [c.39]

Импульсное нагружение представляет собой кратковременное термосиловое воздействие с высокой концентрацией энергии. В слоистой конструкции будут возникать и распространяться волны напряжений, претерпевая многочисленные преломления и отражения от границ слоев. Соответствующий точный анализ напряженно-деформированного состояния слоистой оболочки при учете внутренней картины волновых явлений возможен при использовании динамических уравнений теории упругости. Однако реализация такого подхода чрезвычайно затруднительна. Используемые здесь линейные уравнения (9.1), основанные на гипотезе прямых нормалей для несущих слоев, правильно описывают распространение волн деформаций срединной поверхности, но искажают фазовую скорость изгибных волн, которая при уменьшении длины волны будет неограниченно возрастать. В действительности с большой скоростью движутся короткие волны малой амплитуды, которые из-за демпфирования в оболочке можно не учитывать. Волны, несущие основную энергию изгиба, имеют достаточно большую длину, движутся с конечной скоростью и вполне правильно описываются классическими уравнениями. Поэтому даже на основе линейной теории оказывается возможным выявить в первом приближении основные закономерности нестационарного поведения трехслойной оболочки при импульсном нагружении [286].  [c.491]


Для расчета характеристик крыльев малого удлинения по теории вихревой поверхности в линейной постановке широкое распространение получил метод, развитый в работах С. М. Белоцерковского (1955 1964),-Расчеты по этому методу производятся с помощью вычислительных машин. Несущая поверхность заменяется системой дискретных подковообразных вихрей, причем особенность этих подковообразных вихрей состоит в том, что Они могут быть косыми , т. е. участок подковообразного вихря, являющийся элементом присоединенного вихря, может составлять некоторый угол с направлением набегающего потока. После удовлетворения граничным условиям расчет сводится к решению системы алгебраических  [c.95]

По линейной аэродинамической теории несущей полосы при изменении угла атаки ф срединной поверхности происходит перераспределение давления  [c.185]

Представление энергии смеси в виде (1.1.17), на основе которого и записываются уравнения энергии в этой главе, справедливо, если каждую фазу считать локально однородной, т. е. в каждом элементарном объеме смеси вещество каждой фазы, в том числе и включений (капель, частиц, пузырьков и т. д.), принимается однородным вплоть до самой поверхности раздела фаз, и поэтому энергия каждой составляющей считается пропорциональной ее массе. Это равносильно тому, что особенности поверхностного слоя вещества толщиной порядка радиуса молекулярного взаимодействия (- 10 Л1),являющегося границей раздела фаз, далее не учитывается. Для этого необходимо, чтобы размеры включений были во много раз больше толщины этого слоя. Кроме того, в (1.1.17) и везде в гл. 1 будет учитываться только та часть кинетической энергии смеси, которая связана с макроскопическим движением фаз со скоростями U . В действительности имеются еще мелкомасштабные (с характерным линейным размером, равным по порядку размеру неоднородностей смеси) течения (например, радиальные пульсационные движения вокруг пузырьков, обратные токи несущей жидкости около включений из-за их относительного движения в этой жидкости, хаотические движения включений). В большинстве существующих теорий взаимопроникающего движения кинетическая энергия такого движения не учитывается. Таким образом в качестве первого этапа в гл. 1 рассматривается случай, когда энергия смеси при однородном представлении энергий фаз является аддитивной по массе фаз. Учет поверхностных явлений в рамках представлений Гиббса и кинетической энергии мелкомасштабного движения фаз имеется в главах 2—4.  [c.30]


Для изотропных несущих слоев приняты гипотезы Кирхгофа, в жестком заполнителе справедливы точные соотношения теории упругости с линейной аппроксимацией перемещений его точек от поперечной координаты 2. На границах контакта используются условия непрерывности перемещений. Материалы несущих слоев несжимаемы в поперечном направлении, в заполнителе учитывается его обжатие, деформации малые. Система координат x,y,z связывается со срединной плоскостью заполнителя. На стержень действуют силовые поверхностные нагрузки р х), q x). Через Wk x) и Uk x) обозначены прогибы и продольные перемещения срединных поверхностей несущих слоев, h , — толщина к-то слоя, /гз = 2с к = 1,2,3 — номер слоя), 6q — ширина стержня. Все перемещения и линейные размеры стержня отнесены к его длине I.  [c.194]

Важнейший класс теории П. составляют динамич. задачи изучение собственных, вынужденных, парамет-рич. колебаний, а также автоколебаний разл. типа, еапр. при флаттере. Расс.мотрение осн. типов колебаний ведётся о позиций линейной теории для жёстких П. и нелинейных зависимостей, относящихся к гибким и абсолютно гибким П. Большое значение для совр, техники имеет исследование поведения П. при быстром (динамич.) нагружении и при действии ударных нагрузок. Несущая способность П. при динамич. приложении усилий сжатия и сдвига в срединной поверхности оказывается выше, чем при статич. нагружении. При изучении динамич. устойчивости должны учитываться форма прикладываемых к П. импульсов и их последовательность. При исследовании динамич. задач для П. в ряде случаев должны приниматься во внимание волновые процессы в материале П., связанные с деформациями в срединной поверхности, и силы инерции, отвечающие деформациям сдвига (но модели Тимошенко), Соответствующие ур-ния движения являются гиперболическими.  [c.627]

Критерий предельного состояния, используемый в рассматриваемом подходе, представляет собой распространение теории наибольших нормальных деформаций Сен-Венана на анизотропные материалы. Поскольку компоненты деформации, определяющие несущую способность ортотропного слоя, могут быть отнесены к трем главным осям, в критерий включены три главные деформации. В первоначальной формулировке метода предполагалось, что материал слоя линейно упругий вплоть до разрущения, поэтому предельное состояние наступает и при достижении предела текучести. Слой считается разрушенным, когда любая деформация в нем — в направлении волокон, в поперечном направлении или сдвиговая—достигает предельного значения, определенного из эксперимента при одноосном напряженном состоянии. Предельная поверхность слоистого композита в целом представляет собой внутреннюю огибающую предельных поверхностей ьсех слоев материала, приведенных к его главным осям.  [c.148]

Система четырех уравнений, содержащая т, Р, оь аг для изотропных несущих слоев сведена последовательно к трем (ш, р, ([) и Двум w, Р) нелинейным уравнениям. Здесь впервые в теории слоистых оболочек была сформулирована гипотеза о линейном распределении касательных перемещений по высоте пакета, позволившая методологически строить эту теорию в духе теории однослойных оболочек. Принималось, что несущие слои, передающие изгиб, и кручение, испытывают конечные прогибы, а заполнитель воспринимает только малый поперечный сдвиг. Гипотеза Кирхгоффа—Лява о прямой и нерастяжимой нормали несущих слоев и предположение о прямолинейности нормали в заполнителе удовлетворяют принятому линейному закону распределения касательных перемещений по толщине оболочки. Одновременно для случая изотропных несущих слоев дана система д-вух нелинейных уравнений w, Р), найденных при условии, что срединные поверхности несущих слоев присоединены к крайним поверхностям заполнителя.  [c.71]


Смотреть страницы где упоминается термин Линейная теория несущей поверхности : [c.685]    [c.669]   
Смотреть главы в:

Сверхзвуковая аэродинамика Принципы и приложения  -> Линейная теория несущей поверхности



ПОИСК



Линейная теория

Несущая поверхность

Поверхности Теория

Теория несущей поверхности

Ток несущий



© 2025 Mash-xxl.info Реклама на сайте