Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Теория возмущений для термодинамических функций Грина

Эта формула служит основой для вычисления термодинамических функций Грина по теории возмущений и для построения диаграммной техники. Конечно, сама схема теории возмущений будет эффективна только в тех случаях, когда средние значения со статистическим оператором вычисляются достаточно просто. Конкретные правила теории возмущений определяются явным видом оператора энтропии, т. е. выбором базисных динамических переменных средние значения которых задают неравновесное состояние системы.  [c.18]


Термодинамические функции Грина ферми- и бозе-систем. В качестве типичного примера рассмотрим теорию возмущений и диаграммную технику для термодинамических функций Грина ферми- и бозе-систем ).  [c.18]

Для неравновесной системы электронов параметры 5 (р) и 2(к) являются некоторыми функционалами от одночастичной функции распределения f p t) и корреляционной функции По аналогии с равновесным случаем [см. (6.1.65)] следует ожидать, что функция 2(к) сингулярна в пределе к О, поэтому при вычислении средних значений в правых частях уравнений (6.1.61) и (6.1.62) вклад членов с малыми к необходимо учесть во всех порядках теории возмущений по оператору S. С этой целью наиболее удобно воспользоваться диаграммной техникой для термодинамических функций Грина.  [c.22]

Впрочем, структура соотношения (6.1.75) очевидна из общей формулы (6.1.59) для одночастичной термодинамической функции Грина. Действительно, при вычислении любого члена теории возмущений с помощью теоремы Вика каждый из операторов й (1) и а 2) будет спарен с фермиевским оператором, входящим в один из операторов возмущения S. В результате на диаграмме появятся две краевые -линии. Остальные спаривания дают вклад в собственно энергетическую часть.  [c.25]

Важным обстоятельством является то, что после разложения упорядоченных экспонент в ряды по S все средние значения в правых частях уравнений (6.1.15) и (6.1.17) вычисляются с помощью теоремы Вика, поскольку невозмущенный оператор энтропии (6.1.10) есть билинейная форма от операторов рождения и уничтожения. Для слабо неидеальных квантовых газов множитель Лагранжа 52(/ /2 1 2) играет роль малого параметра. В этом случае уравнения (6.1.15) и (6.1.17) можно решить методом итераций (см. задачу 6.1). Если корреляции дают существенный вклад в неравновесные термодинамические величины, то метод итераций непригоден и требуется по крайней мере частичное суммирование формальных рядов теории возмущений. Как уже отмечалось, для равновесных систем суммирование такого рода наиболее удобно проводится в технике температурных функций Грина. Поэтому естественно построить аналогичную технику и для неравновесных состояний.  [c.12]

С помощью введенных выше графических элементов можно дать наглядное диаграммное представление любого члена в разложении одночастичной функции Грина по степеням возмущения S в операторе энтропии. Как мы уже отмечали, правила диаграммной техники для термодинамических и равновесных мацубаровских функций Грина фактически совпадают. Формально выражение (6.1.64) для корреляционной части оператора энтропии аналогично выражению для оператора двухчастичного взаимодействия в гамильтониане. Поэтому мы просто воспользуемся результатами анализа рядов теории возмущений для мацубаровских функций Грина [1, 64], внося необходимые изменения, связанные с рассматриваемой задачей. Итак, в импульсном представлении правила построения диаграммного разложения одночастичной термодинамической функции Грина состоят в следующем  [c.23]


Мы не будем останавливаться на анализе всего ряда теории возмущений для одночастичной термодинамической функции Грина, так как он фактически повторяет анализ ряда теории возмущений для равновесной мацубаровской функции Г рина в случае двухчастичного взаимодействия [1, 64]. Можно показать, что точная функция Грина записывается через полную собственно энергетическую часть в  [c.25]

Систематически излагается термодинамика и статистическая теория миогочастичных райиовесных систем. В основу статистической физики равновесных идеальных и неидеальных систем положены метод Гиббса и метод функций распределения Боголюбова. Излагается классическая и квантовая теория газа, твердого тела, равновесного излучения, статистическая теория плазмы и равновесных флуктуаций. Обсуждаются методологические вопросы курса, В книге рассматриваются также некоторые новые вопросы, еще не вошедшие в программу теория критических индексов, вариационный принцип Боголюбова, термодинамическая теория возмущений, интегральные уравнения для функций распределения (уравнение самосогласованного поля,, интегральное уравнение Боголюбова—Борна—Грина, уравнение Перкуса— Иевика).  [c.2]

Для суммирования бесконечных последовательностей членов ряда теории возмущений очень удобна диаграммная техника, которая практически не отличается от диаграммной техники для равновесных систем (см. [1, 64]), поскольку квазиравновесные термодинамические функции Г рина имеют ту же алгебраическую структуру, что и равновесные мацубаровские функции Грина. Как и в равновесном случае, учет знаменателей в выражениях типа (6.1.56) приводит к сокращению вкладов несвязных диаграмм. Таким образом, графическое представление для одночастичной термодинамической функции Г рина получается из формулы  [c.20]

Уравнение Дайсона на расширенном контуре. Теория возмущений для смешанных функций Грина строится примерно так же, как для временных и термодинамических функций. Естественно ввести, кроме представления Гайзен-берга (6.4.9), представление взаимодействия на контуре С . Записывая гамильтониан система в виде суммы Я = Я + Я, где Я — гамильтониан свободных частиц, определим операторы в представлении взаимодействия как  [c.66]


Смотреть страницы где упоминается термин Теория возмущений для термодинамических функций Грина : [c.284]    [c.275]   
Смотреть главы в:

Статистическая механика неравновесных процессов Т.2  -> Теория возмущений для термодинамических функций Грина



ПОИСК



Возмущение

Грина

Грина функция

Теория возмущений

Теория функция

Термодинамическая теория

Термодинамическая теория возмущений

Термодинамические функции

Функция возмущения



© 2025 Mash-xxl.info Реклама на сайте