Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Удельные объемы

Это уравнение является, по существу, и допущением о виде уравнения состояния материала оно описывает материалы, для которых напряжение изотропно, и, следовательно, может быть полностью определено одной скалярной величиной (давлением). Таким образом, это допущение заключается в том, что давление полностью определено мгновенными значениями удельного объема и температуры.  [c.147]

В системе СИ единица удельного объема 1 м 7кг. Между удельным объемом вещества и его плотностью существует очевидное соотношение v= 1/р.  [c.8]


Силы притяжения действуют п том же направлении, что и внешнее давление, и приводят к возникновению молекулярного (или внутреннего) давления. Сила молекулярного притяжения каких-либо двух малых частей газа пропорциональна произведению числа молекул в каждой из этих частей, т. е. квадрату плотности, поэтому молекулярное давление обратно пропорционально квадрату удельного объема газа p on = a/v , где а — коэффициент пропорциональности, зависящий от природы газа.  [c.9]

При больших удельных объемах и сравнительно невысоких давлениях реального газа уравнение Ван-дер-Ваальса практически вырождается в уравнение состояния идеального газа Клапейрона, ибо величина a/v (по сравнению с р) и Ь (по сравнению с v) становятся пренебрежимо малыми.  [c.10]

Что произойдет с температурой системы, если при постоянных удельном объеме и давлении из системы убрать половину ее структурных частиц  [c.11]

Насыщенный пар, в котором отсутствуют взвешенные частицы жидкой фазы, называется сухим насыщенным паром. Его удельный объем и температура являются функциями давления Поэтому состояние сухого пара можно задать любым из параметров — давлением, удельным объемом или температурой.  [c.35]

Поскольку удельный объем жидкости растет, а пара падает, то при постоянном увеличении давления мы достигнем такой точки, в которой удельные объемы жидкости и пара сравняются. Эта точка называется критической. В критической точке различия между жидкостью и паром исчезают. Для воды параметры критической точки К составляют Ркр = = 221,29-Ю" Па /кр = 374,15 °С v p = = 0,00326 м /кг.  [c.36]

Если теперь соединить одноименные точки плавными кривыми, то получим нулевую изотерму /, каждая точка которой соответствует состоянию 1 кг воды при О °С и давлении р, нижнюю пограничную кривую II, представляющую зависимость от давления удельного объема жидкости при температуре кипения, и верхнюю пограничную кривую УУ/, дающую зависимость удельного объема сухого насыщенного пара от давления.  [c.36]

Температурный коэффициент объемного расширения капельных жидкостей значительно меньше, чем газов. В небольшом диапазоне изменения температур, а значит, и удельных объемов производную в уравнении (9.7) можно заменить отношением конечных разностей параметров холодной (с индексом ж ) и прогретой (без индексов) жидкости  [c.78]

Нельзя, поскольку не будет обеспечена разница весов воды в опускных трубах и пароводяной смеси в испарительных (подъемных), т. е. не будет движущей силы естественной циркуляции. Это связано с тем, что (согласно 4.2) в критическом состоянии удельные объемы (и плотности) воды и пара  [c.215]


На практике в уравнение (1-84) вводят эмпирический коэффициент для учета рассеяния энергии вследствие трения и других необратимых процессов. Уравнение (1-84) также находит применение для сжимаемых жидкостей, когда изменение давления достаточно мало по сравнению с абсолютным давлением. В таких случаях изменение удельного объема среды незначительно.  [c.56]

А. Работа, необходимая, чтобы накачать 18 фунтов (8200 г) жидкой воды удельным объемом 0,016 фут /фунт (1 см 1г) от 1 до 10 атм в изотермическом стационарном процессе может быть вычислена по уравнению (1-64)  [c.57]

Для однофазного чистого компонента или гомогенного раствора определенной массы и состава Р и С равны единице и число степеней свободы равно двум. Таким образом, состояние системы можно определить, зная значения любых двух интенсивных переменных температуры, давления или удельного объема.  [c.149]

Несмотря на то, что а- и р-фазы могут сильно отличаться одна от другой удельными объемами, типами решеток, подобный распад не вызывает напряжений, так как при высокой температуре и большой подвижности атомов напряжения быстро релаксируют (рассасываются).  [c.142]

Полиморфное превращение сопровождается скачкообразным изменением свойств металлов или сплавов удельного объема, теплоемкости, теплопроводности, электропроводности, магнитных свойств механических и химических свойств и т. д.  [c.41]

Карбиды являются тончайшими пластинками толщиной в несколько периодов кристаллической решетки. Решетки карбида и а-фазы (твердого раствора) когерентны. Поскольку кристаллические решетки и удельные объемы карбида и а-фазы различны, между ними возникают упругие напряжения.  [c.108]

Эти структуры обладают большим удельным объемом и меньшим коэффициентом термического расширения. Поэтому при превращении аустенита в мартенсит(или в другие структуры закалки) увеличивается объем детали, вследствие чего возникают внутренние напряжения. Внутренние напряжения искажают кристаллическую решетку, приводят к короблению и деформации изделий, а также к появлению трещин.  [c.121]

Деформация изделий при термообработке возникает вследствие изменения удельного объема стали при фазовых превращениях в процессе закалки и в результате изменения размеров и форм изделий под действием термических и структурных напряжений.  [c.129]

Величина удельного объема зависит от химического состава, прокаливаемости и т хл стали. Так, при увеличении содержания С с 0,6 до 0,8% удельный объем Д V увеличивается с 0,46 до 1,13%.  [c.129]

Нестабильность размеров может возникать не в процессе, а после термообработки изделий. При хранении на промежуточных складах наблюдается уменьшение или увеличение размеров. Уменьшение является следствием медленного отпуска при обычной температуре мартенсита закалки (выделение С из твердого раствора и уменьшение удельного объема). Стабилизация размеров при этом достигается отпуском при 120—150 С. Увеличение размеров происходит в результате постепенного распада остаточного аустенита при обычной температуре. Стабилизация проводится для того, чтобы осуществлялось полное превращение А М.  [c.130]

Удельный объем. Удельным объемом однородного вещества называется объем, занимаемый единицей массы данного вещества. В технической термодинамике удельный объем обозначается V и измеряется в л1 /кг  [c.12]

Закон Бойля—Мариотта устанавливает зависимость между удельным объемом и абсолютным давлением идеального газа в процессе  [c.22]

ИЛИ при постоянной температуре произведение удельного объема на давление есть величина постоянная  [c.22]

Выражение (2-5) показывает, что произведение удельного объема идеального газа на абсолютное давление, деленное на абсолютную температуру, для любого равновесного состояния есть величина постоянная  [c.24]

Отношение плотностей газов в уравнении (а) можно заменить обратным отношением удельных объемов. Тогда  [c.26]

Это соотношение показывает, что при одинаковых физических условиях произведение удельного объема газа на его молекулярную массу есть величина постоянная и не зависит от природы газа  [c.26]


Соотношения между массовыми н объемными долями. Между удельными объемами, плотностями, молекулярными массами и газовыми постоянными какого-нибудь газа и всей смеси в целом на основании закона Авогадро и уравнения Клапейрона — Менделеева существует следующая зависимость  [c.32]

Какая существует зависимость между удельным объемом, плотностью, молекулярной массой и газовой постоянной  [c.35]

Поскольку кинетическая составляющая внутренней энергии целиком определяется температурой тела, так как температура есть мера средней кинетической энергии молекул, а потенциальная ее составляющая при заданной температуре зависит только от удельного объема (расстояния между молекулами), то, следовательно, и полная внутренняя энергия будет являться функцией параметров и в данном состоянии тела будет иметь вполне определенную величину.  [c.54]

Пусть в цилиндре под поршнем находится 1 кг газа при давлении р, равном в равновесном процессе давлению среды, и удельном объеме Vi (рис. 5-4). Плош,адь поршня F. Если сообщить газу некоторое количество тепла, то он будет расширяться при постоянном давлении и перемещать поршень до нового положения в точке 2.  [c.57]

В момент испарения последней капли жидкости в ограниченном пространстве без изменения температуры и давления образуется сухой насыщенный пар. Состояние сухого насыщенного пара определяется одним параметром — давлением, или удельным объемом, или температурой.  [c.173]

Перегретый пар является не насыщенным, так как при данном давлении удельный объем перегретого пара больше удельного объема сухого насыщенного пара, а плотность меньше. Он по своим физическим свойствам приближается к газу и тем ближе, чем выше степень перегрева.  [c.173]

Применяя принцип равноприсутствия, мы должны предположить, 1что свободная энергия чисто вязких жидкостей зависит от температуры, градиента температуры, скорости деформации и удельного объема  [c.164]

Если неравновесность вызвана теплообменом при конечной разности температур (температура газа Т меньше температуры источника 7 ), то возрастание энтропии рабочего тела ds = 6q/T оказывается больше, чем dSfi = (>q/Т в равновесном процессе из-за снижения температуры газа. При том же положении поршня, т. е. заданном удельном объеме V, меньшей температуре газа соответствует меньшее его давление р. Соответственно меньше должна быть и уравновешивающая сила Р Р = = p F

Работа расширения против этой силы bl = P dy = p dv[c.27]

Секундный массовый расход т одинаков для всех сечений, поэтому изменение площади сечения F вдоль сопла (по координате х) определяется соотношением интенсивностей возрастания удельного объема 1-аза v и его скорости с. Если скорость увеличивается быстрее, чем удельный объем d /dx>dv/dx), то сопло должно суживаться, если же d /dxddv/dx,— расширяться.  [c.48]

При переходе сплава из жидкого состояния в твердое происходит усадка, сопровождаемая уменьшением удельного объема зерна. В результате усадки между зернами в местах сощшкосновения растущих дендрнтов, в междуосных пространствах возникают микропустоты, которые могут заполняться неметаллическими включениями (сульфидами, фосфидами и т. п.) или оставаться микроскопическими усадочными раковинами и порами. Такие включения и поры ухудшают механические свойства сплава, так как ири его нагреве и приложении к нему нагрузок становятся очагами развития трещин, надрывов и тому подобных дефектов.  [c.8]

Если термодинамическую поверхность рассечь плоскостями, параллельными осям координат, то на поверхности получатся следуюш,ие кривые сечение плоскостью v = onst дает линию, характеризующую процесс изменения давления в зависимости от температуры в координатах р, Т процесс, описываемый этой линией, протекает при постоянном объеме и называется изохорным, сечение плоскостью р = onst дает линию изменения удельного объема в зависимости от температуры в координатах v, Т процесс, который описывает эта линия, протекает при постоянном давлении и называется изобарным] сечение плоскостью Т = onst дает линию изменения давления в зависимости от удельного объема в координатах р, v описываемый этой линией процесс протекает при постоянной температуре и называется изотермическим.  [c.17]

Закон Гей-Люссака устанавливает зависимость между удельным объемом и абсолютной температурой при постоянном давлении. Этот закон был открыт экспериментальным путем французским физиком Жозефом Луи Гей-Лнзссаком в 1802 г. kP  [c.23]

В реальном газе, при наличии сил взаимодействия между молекулами, сила ударов о стенку сосуда будет меньше, вследствие того что все молекулы у стенки сосуда притягиваются соседними молекулами внутрь сосуда. Следовательно, и давление, оказываемое реальным газом на стенку, по сравнению с идеальным, будет меньше на величину Др, которая представляет собой поправку на давление, учитывающ,ую силы взаимодействия между молекулами. Эта поправка Ар прямо пропорциональна как числу притягиваемых, так и числу притягивающих молекул, или прямо пропорциональна квадрату плотности газа, или обратно пропорциональна квадрату его удельного объема  [c.41]

Если на рк-диаграмме построить изотермы, соответствующие уравнению Ван-дер-Ваальса, то они будут иметь вид кривых, изображенных на рис. 4-3. Из рассмотрения этих кривых видно, что при сравнительно низких температурах они имеют в средней части волнообразный характер с максимумом и минимумом. При этом чем выше температура, тем короче становится волнообразная часть изотермы. Прямая ЛВ, пересекающая такого типа изотерму, дает три действительных значения удельного объема в точках А, R пВ, т. е. эти изотермы соответствуют первому случаю решения уравне-нения Ван-дер-Ваальса (три различных действительных корня). Наибольший корень, равный удельному объему в точке В, относится к парообразному (газообразному) состоянию, а наименьший (в точке А) — к o toянию жидкости. Поскольку, как указывалось ранее, уравнение Ван-дер-Ваальса в принципе не может описывать двухфазных состояний, оно указывает (в виде волнообразной кривой) на непрерывный переход из жидкого состояния в парообразное при данной температуре. В действительности, как показывают многочисленные эксперименты, переход из жидкого состояния в парообразное всегда происходит через двухфазные состояния вещества, представляющие смесь жидкости и пара. При этом при данной температуре процесс перехода жидкости в пар происходит также и при неизменном давлении.  [c.42]


Второе слагаемое Дс определяет зависимость теплоемкости от давления или удельного объема и связано с изменением потеыцн-альиой составляющей внутренней энергии реального газа.  [c.77]

Следует отметить, что в однородной системе процесс при постоянных объеме и температуре может быть только неравповесным, так как в противном случае состояние системы полностью определялось бы заданием удельного объема и температуры и никакие процессы в этих условиях протекать не могли (система находилась бы в состоянии равновесия). Реально процессы при неизменных V п Т могут осуществляться, например, при протекании химической реакции в смеси реагирующих друг с другом веществ, при растворении веществ и др.  [c.147]


Смотреть страницы где упоминается термин Удельные объемы : [c.148]    [c.12]    [c.13]    [c.103]    [c.174]    [c.42]    [c.49]    [c.50]    [c.57]   
Смотреть главы в:

Термодинамические свойства воды и водяного пара Издание 5  -> Удельные объемы



ПОИСК



Объемы тел



© 2021 Mash-xxl.info Реклама на сайте