Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Консервативные силы и связь их с потенциальной энергией

Теорема Лагранжа об устойчивости консервативных систем. Пусть система с голо-номными стационарными связями находится в равновесии под действием одних консервативных сил. Если потенциальная энергия системы имеет в положении равновесия изолированный минимум, то это положение равновесия устойчиво но Ляпунову.  [c.96]

План решения. Если все силы, действующие на систему потенциальны, то такал система называется консервативной. Обобщенные силы и потенциальная энергия связаны дифференциальными соотношениями = —dF[/dq , где — обобщенные координаты.  [c.318]


Если в некотором положении системы, подчиненной идеальным голономным связям и находящейся под действием консервативных сил, потенциальная энергия имеет минимум, то эго положение равновесия устойчиво.  [c.337]

Сделаем по поводу полученных результатов два замечания. Во-первых, устойчивость по первому приближению еще не означает устойчивости при рассмотрении точных уравнений (гл. XIX). Кроме того, в этом случае мы лишены возможности вывести суждение об устойчивости из интеграла энергии, как это мы делали в теории малых колебаний (гл. IX). Во-вторых, если система устойчива при рассмотрении точных уравнений, а также в первом приближении, то это связано с влиянием линейных членов Ti в выражении для L. Благодаря им в уравнениях движения появляются гироскопические члены. При отсутствии слагаемых мы имели бы задачу о движении в поле консервативных сил, а для такого поля потенциальная функция в точках Ni и имеет максимум, и эти точки являются положениями неустойчивого равновесия.  [c.570]

Следовательно, из принципа возможных перемещений следует, что необходимые и достаточные условия равновесия системы с идеальными связями под действием консервативных сил совпадают с необходимым (но недостаточным) условием экстремума потенциальной энергии. Принцип возможных перемещений может быть использован при решении задач статики наряду с более привычными уравнениями статики.  [c.54]

Постановка задачи о малых свободных колебаниях. Рассмотрим механическую систему с голономными стационарными идеальными связями. Все силы, действующие на систему, являются консервативными, причем энергия всех этих сил входит в потенциальную энергию системы U (qi,. ....g ). При t < О система находится в положении  [c.54]

КОНСЕРВАТИВНЫЕ СИЛЫ И СВЯЗЬ их с ПОТЕНЦИАЛЬНОЙ ЭНЕРГИЕЙ  [c.146]

Замечания. 1. Работа консервативных сил всегда связана с изменением потенциальной энергии системы. Если работа этих сил положительна, то изменение потенциальной энергии системы отрицательно (потенциальная энергия системы уменьшается). Наоборот, при отрицательной работе консервативных сил потенциальная энергия системы возрастает.  [c.147]

Предположим теперь, что силы, под действием которых находится наша система, имеют потенциал и что все связи системы склерономные такая система называется консервативной. Мы уже видели в 125, что положениями равновесия консервативной системы являются те ее положения, в которых потенциальная энергия системы достигает экстремума. Теперь мы покажем, что равновесные положения консервативной системы, в которых потенциальная энергия системы достигает минимума, устойчивы.  [c.368]


Принцип Эйлера — Лагранжа. В отличие от предыдущего, этот принцип применим только к консервативным системам, т.е. системам, полная механическая энергия которых сохраняется. В таком случае идеальные голономные связи являются стационарными, а действующие силы потенциальные стационарные.  [c.287]

Критерий устойчивости состояния покоя для систем с голоно.м-пыми и стационарными связями, находящихся в консервативном силовом поле, устанавливается в зависимости от потенциальной энергии этих систем. Представим себе механическую систему с голономными стационарными связями, находящуюся под действием сил, имеющих потенциал. Такую систему, как указывалось выше ( 72), называют консервативной.  [c.335]

Теорема об изменении кинетической энергии устанавливает связь между изменением основной меры движения системы ма-тер альных точек — кинетической энергии — и мерой действия сил на протяжении путей движения точек системы — работой сил для широкого класса сил, носящих наименование консервативных, работа может быть выражена как изменение потенциальной энергии. Таким образом, в круг вопросов механики вводится понятие энергии. Значение этого понятия состоит в том, что им определяется единая физическая величина, проявляющаяся в различных физических явлениях и, таким образом, связывающая их между собой. Понятие энергии объединяет механику с термодинамикой, с учением об электрических явлениях и т. и. Преобразование механической энергии в другие формы энергии и обратное преобразование этих форм в механи-чесь ую энергию представляет важную задачу современной тех ики.  [c.105]

Герц поставил перед собой задачу, обратную той, которую так пли иначе решает элементарная механика нельзя ли все собственно силы свести к силам ограничения движения Возможно, что вообш,е все наблюдаемые изменения скорости, которые не требуются как будто с точки зрения геометрических связей, вызваны па самом деле не силами, а именно какими-то, может быть, еще не исследованными, геометрическими связями. Сама сила есть лишь способ описания этих связей, применимый при известных допуш,еннях, но отнюдь не являющийся необходимым для однозначного и ясного научного познания мира. Понятие о силе как о причине замедления или ускорения в механике Г. Герца исчезает бесследно. Сила, с точки зрения Герца, является только мерой переноса или взаимопреоб-разования движения между прямо связанными системами. Загадочная потенциальная энергия консервативных систем обычной механики оказывается обычной кинетической энергией скрытых материальных систем. В основе действий, наблюдаемых между удаленными телами (например, планетами) лежит материальный процесс, протекающий в скрытых материальных системах, связывающих обычные или наблюдаемые системы.  [c.237]

МЕХАНИЧЕСКОЕ РАВНОВЕСИЕ— состояние покоя или прямолинейноравномерного движения системы материальных точек (тела, звена, механизма). М. может 1ть устойчивым, неустойчивым и безразличным. При устойчивом равновесии достаточно малые отклонения системы (тела) от положения равновесия вызывают силы, стремящиеся вернуть ее в состояние равновесия. Условием устойчивого равновесия для консервативной системы (где механическая энергйя не превращается в тепловую) является минимум потенциальной энергии данной системы (теорема Лагранжа—Дирихле). Если на систему с идеальными связями действуют только силы тяжести, то устойчивым будет положение, при котором центр тяжести занимает самое низкое положение (принциТП Торичелли).  [c.178]

Предположим, что существует инерциальная система S, в которой ско-росги всех частиц малы но сравнению со скоростью света, так что в S можно с хорошим приближением пользоваться нерелятивистской механикой Ньютона. Пренебрегая типично атомными явлениями, обусловленными существованием планковского кванта действия, мы можем в качестве такой механической системы рассматривать атомное ядро, поскольку элементарные частицы, из которых построены атомные ядра, нуклоны, настолько тяжелы, что их скорости в общем случае можно считать малыми по сравнению с с. Данное предположение означает, что собственные времена отдельных частиц в 2 практически совпадают и равны времени / в системе S и, кроме того, что силы связи между частицами мгновенны и удовлетворяют третьему закону Ньютона. Если эти силы консервативные, то в системе S они определяются как градиенты потенциальной функции V, зависящей от расстояния между частицами. В соответствии с механикой Ньютона при движении частиц сумма полной кинетической и потенциальной энергии не изменяется со временем, т. е.  [c.65]



Смотреть страницы где упоминается термин Консервативные силы и связь их с потенциальной энергией : [c.321]    [c.80]    [c.167]    [c.147]    [c.361]   
Смотреть главы в:

Курс общей физики Механика  -> Консервативные силы и связь их с потенциальной энергией



ПОИСК



Консервативность силы

Консервативные

Консервативные силы. Потенциальная энергия

Потенциальность силы

Сила консервативная

Сила связи

Силы консервативные и потенциальные

Силы потенциальные

Энергия потенциальная

Энергия связи



© 2025 Mash-xxl.info Реклама на сайте