Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Процессы переноса при неоднородной турбулентности

ПРОЦЕССЫ ПЕРЕНОСА ПРИ НЕОДНОРОДНОЙ ТУРБУЛЕНТНОСТИ  [c.55]

На основе предложенных моделей неполного статистического описания процессов переноса при неоднородной турбулентности производится численное решение класса модельных краевых задач пристенной и свободной турбулентности.  [c.72]

Процессы переноса при неоднородной турбулентности  [c.75]


Сформулируем корреляционные модели неполного статистического описания процессов переноса импульса и скалярной субстанции при неоднородной турбулентности, не прибегая к введению полуэмпирических замыкающих соотношений (которые содержали бы при таком количестве уравнений огромное количество эмпирических констант). Предложенные модели в отличие от большинства полуэмпирических моделей обладают необходимыми условиями галилеевой и тензорной инвариантности уравнений,, являются универсальными с точки зрения их использования для любых геометрических конфигураций в общем случае нестационарных турбулентных потоков при любых числах Прандтля (в пределах концепции несжимаемости).  [c.70]

ПЕРЕНОС ИЗЛУЧЕНИЯ — распространение эл.-магн, излучения, звука, нейтронов и др. частиц в различных средах в свободном пространстве, в регулярно-неоднородных и случайно-неоднородных (турбулентных) средах, в средах с дискретными рассеивателями и т. д. при наличии процессов поглощения, испускания и рассеяния. Традиционно П. и. рассматривают в разл. разделах оптики, в частности при описании фотометрии. измерений, выяснении условий формирования оптич, изображений, нахождении характеристик рассеянного излучения и др. Классич, теория П. в. получена из энергетич. соображений и служит основой фотометрии. Кроме того, теорию П. и. применяют в астрофизике при расчёте светимости звёзд, в теплофизике при анализе теплопередачи через излучение, в геофизике при изучении теплового баланса Земли, а также в акустике, теории плазмы и ядерной физике.  [c.565]

Методы полуэмпирической теории турбулентности находят широкое применение при описании турбулентной диффузии примесей, т. е. процесса переноса примесей жидкими частицами в турбулентном потоке. Под описанием турбулентной диффузии следует понимать статистическое описание поля концентрации примеси йри тех или иных начальных и краевых условиях, включающих и задание всех источников примеси. Поле концентрации й (ас, ) будет, вообще говоря, неоднородным, и его математическое ожидание — средняя концентрация О (ас, 1) будет некоторой функцией от ж и определение которой является важнейшей (хотя и не единственной) задачей теории турбулентной диффузии. Для ее решения используется осредненное уравнение переноса, которое в случае несжимаемой жидкости и в пренебрежении молекулярной диффузией имеет вид  [c.479]


Поскольку мы считаем т достаточно малым, то при изменении t на величину порядка t скорость v практически не меняется (ниже будут произведены соответствующие оценки). Поэтому в (23) мы не делаем различия между г ( , i + т) и v (г, t) и пишем vx вместо l Vdx. Условие (23) означает консервативность переносимой турбулентностью характеристики жидкости — в данном случае диэлектрической проницаемости. Таким образом, мы пренебрегаем эффектом выравнивания неоднородностей за счет процессов молекулярной диффузии и теплопроводности за малое время (возникающие при учете этого эффекта поправки имеют тот же порядок малости, что и непостоянство локальной скорости переноса v).  [c.168]

Применение диффузионной теории переноса для турбулентных потоков сред, у которых Ргф, осложняется отсутствием подобия температурных и скоростных полей в ламинарном пристенном пограничном слое. Помимо этого, в турбулентной зоне потока коэффициенты турбулентного переноса количества движения и тепла могут быть различными. Особую сложность представляет использование коэффициента турбулентного переноса тепла для промежуточного, так называемого буферного слоя (рис. 126). Причина этой сложности заключается в том, что перенос тепла из турбулентной зоны потока возмущенными клочкообразными массами среды осуществляется через промежуточную зону с затуханием возмущенных турбулентных масс и с участием нестационарного процесса переноса тепла в ламинарный пограничный слой. В этих условиях неизбежно возникает температурная неоднородность. Поэтому в переходном промежуточном пограничном слое турбулентного потока нельзя принять атурб = Vтypб ( Р турб=1)-В связи с этим применение диффузионной теории для переходного пограничного слоя значительно осложняется, особенно при больших неравенствах Рг" .  [c.318]

Изучение важнейших физико-химических механизмов в условиях турбулентного течения многокомпонентной реагирующей газовой смеси, ответственных за пространственно-временные распределения и вариации определяющих макропараметров (плотности, скорости, температуры, давления, состава и т.п.), особенно эффективно в сочетании с разработкой моделей турбулентности, отражающих наиболее существенные черты происходящих при этом физических явлений. Турбулентное движение в многокомпонентной природной среде отличается от движения несжимаемой однородной жидкости целым рядом особенностей. Это, прежде всего, переменность свойств течения, при которой среднемассовая плотность, различные теплофизические параметры, все коэффициенты переноса и т.п. зависят от температуры, состава и давления среды. Пространственная неоднородность полей температуры, состава и скорости турбулизованно-го континуума приводит к возникновению переноса их свойств турбулентными вихрями (турбулентный тепло- и массоперенос), который для многокомпонентной смеси существенно усложняется. При наличии специфических процессов химического и фотохимического превращения, протекающих в условиях турбулентного перемешивания, происходит дополнительное усложнение модели течения. В геофизических приложениях часто необходимо также учитывать некоторые другие факторы, такие, как влияние планетарного магнитного поля на слабо ионизованную смесь атмосферных газов, влияние излучения на пульсации температуры и турбулентный перенос энергии излучения и т.п. Соответственно, при моделировании, например, состава, динамического и термического состояния разреженных газовых оболочек небесных тел теоретические результаты, полученные в рамках традиционной модели турбулентности однородной сжимаемой жидкости, оказываются неприемлемыми. В связи с этим при математическом описании средних и верхних атмосфер планет возникает проблема разработки адекватной модели турбулентности многокомпонентных химически реагирующих газовых смесей, учитывающей сжимаемость течения, переменность теплофизических свойств среды, тепло- и массообмен и воздействие гравитационного поля и т.п. Эти проблемы рассматриваются в данной части монографии.  [c.9]


В процессах теплообмена и массообмена носнтели обеих перемещаемых субстанций (тепла и вещества) зачастую одни и те же. Так, например, в процессах молекулярной теплопроводности и са-модиффузии носитель обеих субстанций—одни и те же молекулы, находящиеся в хаотическом тепловом движении. Аналогично случаям молекулярного переноса молярное организованное движение или турбулентное перемещивание при наличии неравномерного распределения в пространстве каких-либо субстанций влечет за собой перенос всех этих субстанций, содержащихся в движущейся жидкости, газе или слое, например тепла, влаги, различных примесей. Уместно отметить, однако, что в силу неоднородности и неизотроп-ности перемещивания в псевдоожиженном слое коэффициенты турбулентного переноса в различных точках и разных направлениях должны быть неодинаковыми. Конечно, подобная аналогия между процессами тепло- и массообмена носит ограниченный характер. Ее нельзя, например, распространить на лучистый теплообмен.  [c.242]

Смешение газа и воздуха в зависимости от характера их движения (ламинарного или турбулентного) происходит либо путем одной только молекулярной диффузии (за счет теплового движения молекул), либо путем турбулентной диффузии. В последнем случае турбулентный массообмен, происходящий между газовым потоком и воздухом (будь то неподвижная воздушная среда или спутный воздушный поток), интенсифицирует процесс смешения, так как перенос реагирующих масс происходит путем взаимопроникновения довольно больших газовых объемов (молей), отличающихся друг от друга величиной и скоростью, а также направлением движения. Однако высокие скорости химического реагирования, соответствующие огромным числам взаимных столкновений молекул, реализуются лишь в том случае, когда молекулы топлива и кислорода подведены друг к другу (при определенном температурном уровне) на расстояние I менее (5 6) А,, где X — длина свободного пробега молекул, т. е. 10 см. Следовательно, за счет одной только турбулентной диф- фузни нельзя обеспечить молекулярный контакт основной массы горючего газа и кислорода. Как бы ни была велика скорость движения потока и как бы умело ни использо- вались турбулизирующие средства (закручивание потоков, дробление струй и т. п.), масштаб турбулентности в поточных камерах заведомо превосходит указанную выше величину порядка (5 6) 10 см. Следовательно, для оценки времени полного смешения газовых масс необходимо учитывать как время уничтожения дрейфующих клочкообразных масс турбулентного потока, так и время уничтожения молекулярной неоднородности [Л. 64]. Длитель-  [c.71]


Смотреть страницы где упоминается термин Процессы переноса при неоднородной турбулентности : [c.77]    [c.470]    [c.356]   
Смотреть главы в:

Тепломассообмен Справочник Изд.2  -> Процессы переноса при неоднородной турбулентности

Тепломассообмен  -> Процессы переноса при неоднородной турбулентности



ПОИСК



Неоднородность

Перенос турбулентный

Переносье

Процессы переноса

Ток переноса



© 2025 Mash-xxl.info Реклама на сайте