Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Материалы с малым удельным сопротивлением

Недостатками индукционных тигельных печей являются высокая стоимость электрооборудования, особенно при частотах выше 50 Гц, и низкий КПД при плавке материалов с малым удельным сопротивлением.  [c.229]

Материалы с малым удельным сопротивлением  [c.282]

Потери на электропроводность ничтожно малы у электроизоляционных материалов с высоким удельным сопротивлением (полиэтилен, политетрафторэтилен и т.п.), а на высоких и сверхвысоких частотах -  [c.108]

Чтобы повысить величину удельного сопротивления проводников, применяют сплавы нескольких металлов. Установлено, что только сплавы с неупорядоченной структурой обладают повышенными значениями удельного сопротивления и малыми значениями температурного коэффициента сопротивления. Сплавами с неупорядоченной структурой называются такие, в кристаллической решетке которых нет правильного чередования атомов металлов, составляющих сплав. Эти сплавы составляют группу проводниковых материалов с большим удельным сопротивлением и малыми значениями температурного коэффициента удельного сопротивления. Все перечисленные группы проводников обладают высокой пластичностью, позволяющей получать провода диаметром до 0,01 мм и ленты толщиной 0,05—0,1 мм.  [c.100]


Наряду с малым удельным сопротивлением чистые металлы обладают хорошей пластичностью, т. е. могут вытягиваться в тонкую проволоку (до диаметра 0,01 м), ленты (до толщины 0,01 мм) и прокатываются в фольгу толщиной менее 0,01 мм. Сплавы металлов обладают меньшей пластичностью по сравнению с чистыми металлами, они более упруги и имеют большую механическую прочность. Характерной особенностью всех металлических проводниковых материалов является их электронная электропроводность. Удельное сопротивление всех металлических проводников увеличивается с ростом температуры, а также в результате механической обработки, вызывающей остаточную деформацию в металле. К холодной обработке (прокатка, волочение) Приходится прибегать для получения проводниковых изделий с повышенны.м пределом прочности при разрыве, например), при изготовлении проводов воздушных линий, троллейны.х  [c.176]

Конструкция этого приемника отличается тем, что пьезоэлемент изготавливается не отдельно, а спекается непосредственно на внутреннем электроде. Материалом для внутреннего электрода выбрана платина, которая способна выдержать температуру спекания титаната бария (1380°), не окисляется при этой температуре и практически не реагирует с тита-натом бария, и, наконец, обладает сравнительно малым удельным сопротивлением, что важно при малой толщине проволоки.  [c.333]

К материалам высокой проводимости предъявляют следующие требования возможно большая проводимость (возможно меньшее удельное сопротивление) возможно меньший температурный коэффициент удельного сопротивления достаточно высокая механическая прочность, в частности предел прочности при растяжении и удлинение при разрыве, характеризующая в известной мере гибкость — отсутствие хрупкости способность легко обрабатываться прокаткой и волочением для изготовления проводов малых и сложных сечений способность хорошо свариваться и спаиваться, создавая при этом надежные соединения с малым электрическим сопротивлением достаточная коррозионная устойчивость. Для разных случаев применения эти требования в той или иной степени варьируют. Например, для большинства обмоток электрических машин, аппаратов и проводов выгодней иметь возможно меньшее удельное сопротивление, даже если за счет его снижения несколько снизится и предел прочности при растяжении для троллейных (контактных) воздушных проводов, работающих на разрыв и на истирание, особое значение приобретают повышенные предел прочности при растяжении, твердость, стойкость против истирания.  [c.283]


К материалам высокой проводимости предъявляют следующие требования возможно большая проводимость (возможно меньшее удельное сопротивление) возможно меньший температурный коэффициент удельного сопротивления достаточно высокие механическая прочность, в частности предел прочности при растяжении и удлинение при разрыве, характеризующее в известной мере гибкость — отсутствие хрупкости способность легко обрабатываться прокаткой и волочением для изготовления проводов малых и сложных сечений способность хорошо свариваться и спаиваться, создавая при этом надежные соединения с малым электрическим сопротивлением достаточная коррозионная устойчивость. Для разных случаев применения эти требования в той или иной степени варьируют. Например, для большинства обмоток электрических машин, аппаратов и проводов выгодней иметь возможно меньшее удельное сопротивление, даже если за счет его снижения несколько  [c.244]

Основные требования к покровным компаундам достаточная механическая прочность, способность выдерживать требуемый интервал температур без растрескивания (—60 4-100° С), большое удельно сопротивление, очень мало изменяющееся при увлажнении. Выяснено, что в качестве покровных допускаются компаунды с более высокими значениями tg Ь, чем у пропиточных материалов, так как их качество на добротности катушек значительно не- отражается. Применяемые в катушках индуктивности материалы даны в табл. 29-1.  [c.372]

Рабочий потенциал цинка по отношению к катодно защищаемой стали равен 200— 250 мВ, что значительно меньше потенциала магния (700 мВ). Такая величина потенциала цинка идеальна для морской воды нли других электролитов с низким удельным электрическим сопротивлением, но применение цинка в средах с более высоким удельным сопротивлением не всегда оправдано. Например, использование цинка не даст, по-видимому, существенного эффекта при защите больших подземных систем в почвах с высоким удельным сопротивлением. В то же время цинк оказался полезным материалом для защиты небольших подземных конструкций (таких как резервуары), помещенных в почву с удельным сопротивлением менее 3000 Ом см. В работе Оливе [19] обсуждается применение цинковых анодов для защиты подземного оборудования на бензоколонках в США. Более крупные системы, насчитывающие значительное число цинковых анодов, созданы для защиты стальных газовых магистралей в Хьюстоне и Новом Орлеане [20]. Из общего числа защитных анодов, равного 1200, почти 1000 — цинковые. Это является хорошим примером, показывающим, что при соответствующих почвенных условиях цинковые аноды можно использовать для защиты крупных подземных сооружений. Цинк довольно широко применяют для защиты труб малого диаметра, не имеющих защитных покрытий, а в последнее время его начинают все чаще использовать для защиты труб большого диаметра с покрытиями в зонах плотной застройки, что позволяет уменьшить взаимное коррозионное влияние соседних подземных коммуникаций. Цинковые аноды применяют также для защиты оцинкованных резервуаров для холодной воды.  [c.168]

Для материалов, применяющихся в производстве точных электроизмерительных приборов и образцовых сопротивлений, важную роль играет стабильность сопротивления во времени (отсутствие явления старения) и при температурных колебаниях. Последнее требование связано с возможно малым значением температурного коэффициента удельного сопротивления. Термоэлектродвижущая сила (термо-э. д. с.) этого материала относительно меди должна быть возможно меньшей, чтобы в измерительной схеме не возникали посторонние разности потенциалов, связанные с нагревом мест соединения обмотки из сплава высокого сопротивления с медью. Как известно, на измерении термо-  [c.256]

Термисторы представляют собой чувствительные к колебаниям температуры сопротивления, часто используемые для автоматического обнаружения, измерения и контроля физической энергии. Важнейшее отличие термисторов от других материалов с переменным сопротивлением заключается в их исключительной чувствительности к сравнительно малым изменениям температуры. В противоположность металлам, имеющим небольшой температурный коэффициент сопротивления, термисторы обладают большим отрицательным температурным коэффициентом. Обычно термисторы выполняют в виде бусинок, дисков или шайб и стержней. Их изготовляют из смесей окислов различных металлов, таких, как марганец, никель, кобальт, медь, уран, железо, цинк, титан и магний, со связующими материалами. Окислы смешивают в определенных пропорциях, обеспечивающих получение требуемого удельного сопротивления и температурного коэффициента сопротивления. Полученным смесям придают нужную форму и спекают в контролируемых атмосферных и температурных условиях. Окончательный продукт представляет собой твердый керамический материал, который можно монтировать различными способами в зависимости от механических, температурных и электрических требований.  [c.359]


Наиболее важным свойством смазочных материалов, оказывающим решающее влияние на работу узла, является вязкость, т. е. свойство смазки оказывать сопротивление относительному перемещению ее частиц. Вязкость масла выбирается в зависимости от удельного давления в подшипнике. С величиной вязкости связана величина предельного нагружения подшипников. В подшипниках с большими удельными давлениями применяются масла с большой вязкостью, при малых удельных давлениях — с меньшей вязкостью.  [c.252]

В процессе гамма- и реакторного облучения электрокерамических материалов в зависимости удельного объемного сопротивления от мощности дозы при малых флюенсах наблюдается отсутствие влияния нейтронной составляющей и изменение значения радиационной проводимости целиком определяется у-излучением. При этом для керамических диэлектриков Д имеет порядок единицы. В качестве примера на рис. 27.5 приведена зависимость удельного объемного сопротивления электротехнического фарфора М-23 от мощности дозы -излучения. Точки в диапазоне 0,25—38 Гр/с получены при чистом у-облучении в диапазоне до 8,5 10 Гр/с при смешанном у-нейтронном облучении па стационарных реакторах и остальные точки на импульсных реакторах. Аналогичные кривые получены для всех основных керамических материалов, применяемых в электротехнической промышленности. Эмпирические формулы, позволяющие вести расчет радиационной проводимости в диапазоне от О до 10 Гр/с, имеют вид  [c.322]

Электрометр типа ИТН-7 (ОКП 42 2720 ООО ) предназначен для измерения постоянных напряжений от высокоомных источников, малых постоянных токов и в комплекте с приставкой ПС-1 полных и удельных сопротивлений твердых диэлектрических материалов.  [c.366]

Частотный диапазон применения различных групп магнитомягких материалов в значительной степени определяется величиной их удельного электрического сопротивления. Чем оно больше, тем на более высоких частотах можно использовать материал. Это объясняется тем, что при малых значениях удельного сопротивления с повышением частоты могут недопустимо возрасти вихревые токи и, следовательно, потери на перемагничивание. В постоянных и низкочастотных (до сотен герц и единиц килогерц) полях применяют металлические магнитомягкие материалы, к которым относятся технически чистое железо (низкоуглеродистые электротехнические стали), электротехнические (кремнистые) стали и пермаллой — железоникелевые и железо-никелькобальтовые сплавы. На повышенных и высоких частотах в основном применяют материалы, удельное сопротивление которых соответствует значениям, характерным для полупроводников и диэлектриков. К таким материалам относятся магнитомягкие ферриты и магнито-диэлектрики (см. гл. 30). Иногда на повышенных частотах и особенно при работе в импульсном режиме (см. гл. 31) применяют также металлические материалы тонкого проката (до нескольких микрометров).  [c.287]

Наибольшее значение в электротехнике в качестве проводниковых материалов с малым удельным сопротивлением имеют медь и алюминий. В качестве нроводггакового материала применяется и сталь, в частности в различных комбинациях с медью и алюминием. В ряде случаев применяются и другие материалы и сплавы, а также материалы на основе углерода.  [c.200]

Проводниковые материалы делятся на материалы с малым удельным сопротивлением или собственно проводники и сплавы высокого сопротивления с удельным сопротивлением порядка 0,5— 1 оммм /м.  [c.282]

Наряду с малым удельным сопротивлением чистые металлы обладают хорошей пластичностью, т. е. могут протягиваться в тонкую проволоку (до диаметра 0,01 мм) и ленты (до толщины 0,01 мм). Сплавы металлов обладают меньшей пластичностью по сравнению с чистыми металлами, они более упруги и имеют большую механическую прочность. Характерной осббенностью всех металлических проводниковых материалов является их электронная электропроводность.  [c.207]

Наряду с малым удельным сопротивлением чистые металлы обладают хорошей пластичностью, т. е. могут вытягиваться в тонкую проволоку (до диаметра 0,01 м) и ленты (до толщины 0,01 мм) н прокатываться в фольгу тoлш шoй менее 0,01 мм. Сплавы металлов обладают меньшей пластичностью по сравнению с чистыми металлами, они более упруги и имеют большую механическую прочность. Удельное сопротивление всех металлических проводников увеличивается с ростом температуры, а также в результате механической обработки, вызывающей остаточную деформацию в металле. К холодной обработке (прокатка, волочение) приходится прибегать для получения проводниковых изделий с повышенным пределом прочности при растяжении, например при Изготовлении проводов воздушных линий, троллейных проводов и t. д. Чтобы вернуть деформированным металлическим проводникам прежнюю величину удельного сопротивления их подвергают тер.мической обработке — отжигу, без доступа кислорода. Характерной особенностью всех ме. таллических проводниковых материалов является их электронная электропроводность.  [c.142]

Удельное сопротивление — важнейшая характеристика свариваемого материала при контактной сварке. С его увеличением в соответствии с законом Ленца — Лжоуля уменьшается необходимая для сварки сила тока (при неизменной длительности процесса). Металлы и сплавы, обладающие высоким удельным сопротивлением (табл. 1), могут свариваться на машинах относительно малой мощности и, наоборот, для сварки материалов с низким удельным сопротивлением (меди, алюминия и большинства их сплавов) обычно необходимы машины большой мощности.  [c.18]

Магннтомягкие материалы, обладая высокой магнитной проницаемостью, небольшой коэрцитивной силой и малыми потерями на гистерезис, используются в качестве сердечников трансформаторов, электромагнитов, в измерительных приборах и в других случаях, где необходимо при наименьшей затрате энергии достигнуть наибольшей индукции. Для уменьшения потерь на вихревые токи а трансформаторах используют магнитомягкие материалы с повышенным удельным электрическим сопротивлением, обычно приме-4ЯЮТСЯ магнитопроБоды, собранные из отдельных изолированных фуг от друга тонких листов.  [c.275]


Медные ТС. Обычная медь, поставляемая системой снабжения и торговли в виде проволоки и проводов всех требуемых размеров, не дефицитна, дешева, чиста и гомогенна — вполне удовлетворяет всем требования.м, предъявляе.мым к материалу чувствительных элементов ТС для измерения умеренных температур. Существенный практический недостаток меди — при температуре выше 300 °С она начинает активно окисляться. Поэтому медь применяется в чувствительных элементах ТС для измерения температур не выше 200 °С. Изоляционные покрытия медных проводов — лак или шелк — также не выдерживают влияния высоких температур. К числу недостатков меди следует отнести и ее малое удельное сопротивление (р = 1,7 х X 10 Ом м).  [c.138]

Элементы сопротивления электронагревательных приборов, реостаты пусковые, регулировочные и нагрузочные, эталоны сопротивления и т. п. выполняют из материалов, к которым предъявляют особые требования. Эти материалы должны обладать удельным сопротивлением, более значительным, чем медь и другие хорошие проводники (что обеспечивает компактную конструкцию) и притом весьма мало зависящим от температуры (температурный коэффициент сопротивления должен быть весьма мал). Материалы, применяемые для элементов сопротивления электронагревательных приборов, должны длительно выдерживать высокую температуру, н е расплавляясь и неокисляя с ь.  [c.214]

Криопроводники. К их числу относятся материалы, которые при глубоком охлаждении (ниже —173 °С) приобретают высокую электрическую проводимость, но не переходят в сверхпроводящее состояние. Это объясняется тем, что при низкой температуре удельное сопротивление проводника обусловлено, как правило, наличием примесей и физическими дефектами решетки. Поскольку составляющая удельного сопротивления, обусловленная рассеиванием энергии за счет тепловых колебаний решетки, пренебрежимо мала, для криопроводников необходимо применять хорошо отожженный металл высокой чистоты, который обладает минимальным удельным сопротивлением в рабочем диапазоне температур от —240  [c.125]

Технически чистым называют железо, содержащее не более 0,04 % С. Оно обладает высокими магнитной проницаемостью и индукцией насыщения и низкой коэрцитивной силой. По причине малого удельного электрического сопротивления технически чистое железо обладает повьпиенными потерями на вихревые токи и находит применение только в устройствах постоянного тока (полюсные наконечники электромагнитов, магнитопроводы реле, полюсные наконечники, сердечники и экранирующие корпуса измерительных приборов магнитоэлектрической и электромагнитной систем). Технически чистое железо является основным компонентом при изготовлении многих магнитных материалов. Промышленностью оно выпускается в виде электролитического железа, железа Армко (кипящая низкоуглеродистая  [c.130]

Величина удельного электрического сопротивлешя р обусловливает возможность сосредоточить большую тепловую мощность в малом объеме металла. Чем выше удельное электрическое сопротавлеше материала, тем в меньшем отрезке нагревателя можно выделить требуемую тепловую энергию. Практика показывает, что эта зависимость не всегда легко воспринимается. При беглом анализе часто приходят к ошибочному выводу. При этом обычно рассуждают следующим образом если подсоединить к источнику напряжения одинаковые по размерам отрезки проволоки из меди ( р 0,01 мкОм м) и нихрома ( р 1,0 мкОм м), то при одинаковом напряжении U через медную проволоку пойдет больший ток /( / = U R, где R - электрическое сопротивление отрезка проволоки). Таким образом, в медной проволоке выделится больше тепла и, следовательно, в материале с низким р, при прочих равных условиях, легче получить большее выделение тепловой энергии. Вывод диаметрально противоположен выше изложенному, ошибка в неправильных исходных данных и условиях задачи. При проектировании электронагревательного устройства необходимо выбрать тепловую мощность Р = = /R. Тогда, при определенном значении R и при одинаковом сечении провод с большим р будем короче, т.е. заданная тепловая мощность будет выделяться в меньшем объеме нагревателя.  [c.7]

Большие перспективы ожидаются при применении высокоэнергетического измельчения и вообше механохимического синтеза при изготовлении электроконтактных порошковых материалов, широко применяющихся в узлах коммутации электрического тока высоко- и низковольтного назначения (различные реле, выключатели, пускатели, контакторы и т.п.). Требования, предъявляемые к этим материалам, весьма разнообразны и противоречивы малое удельное и контактное сопротивление, незначительная эрозия, механическая прочность и химическая инертность, высокая теплопроводность и т.д., что может быть достигнуто лишь при композиционном строении, т. е. при сочетании высокоэлектропроводных металлов (Си, А ) и тугоплавких трудноиспаряемых компонентов ( , Мо, СбО). Гетерогенизация структуры до нановключений с возможностью повышения концентрации проводящих компонентов могла бы привести к созданию новых высокоэффективных контактных материалов. Изучение механохимического синтеза в системе W—А показало, что размер вольфрамовых частиц после 15-часового измельчения и взрывного прессования смесей составлял 7—9 нм, а твердость была выше твердости исходных компонентов [30].  [c.164]

Холла, термо-э.д. с. и других свойствах. К сожалению, пока нет измерений, из которых можно было бы сделать выводы. В случаях, когда величина as отрицательна, а ах, положительна (классы 3 и 7), можно доказать, что при плавлении заканчивается переход гомеополярной связи в металлическую. Висмут и сурьма уже проявляют металлические свойства в твердом состоянии, но они имеют высокие удельные сопротивления. Гомеополяр-ный вклад в связь в этих материалах в твердом состоянии мал, но его достаточно, чтобы значение px,/ps было меньше единицы. Материалы в классах 4 и 6 аномальны.  [c.118]

Проводниковые материалы служат для проведения электрического тока. Они, как правило, обладают весьма малым или заданным удельным сопротивлением. К ним относятся, с одной стороны, сверхпроводниковые и криопроводниковые материалы, р которых при очень низких (криогенных) температурах весьма мало, а с другой — материалы высокого сопротивления, применяемые для изготовления резисторов и электронагревательных элементов.  [c.7]

Гигроскопичность и водопоглощаемость не полностью отражают степень возможных изменений электрических свойств электроизоляционного материала при увлажнении. Еслп поглощенная влага способна образовывать внутри изоляции нити или пленки, которые могут пронизывать весь промежуток между электродами (или значительную область этого промежутка), то даже весьма малые количества поглощенной влаги приводят к очень резкому ухудшению электрических свойств изоляции. Если же влага распределяется по объему электроизоляционного материала в виде отдельных, не соединенных между собой малых включений, то влияние влаги на электрические свойства материала менее существенно. Так, например, удельное сопротивление бумаги с 3%-ной влажностью приблизительно в 10 раз меньше, чем абсолютно сухой бумаги, в то время как увлажнение каучуковых материалов с наполнителями вызывает лишь весьма незначительное уменьшение их р. Для несмачивае-мых материалов уменьшение при выдержке во влажной среде незначительно, так как влага даже в виде росы образует отдельные капли, а не сплошную водяную пленку.  [c.162]


Газообразные диэлектрики при использовании в качестве электроизоляционных материалов имеют следующие преимущества высокое удельное сопротивление р, малую (близкую к единице) диэлектрическую проницаемость е, малый тангенс угла диэлектрических потерь б. Недостатком газообразной электрической изоляции является ее низкая электрическая прочность. Однако в ряде случаев (устройства низкого напряжения) этот недостаток не имеет практического значения, а иногда его устраняют путем применения газов под повышенным давлением, особенно при подборе газов со сравнительно большой электрической прочностью (см. далее). В электрических устройствах газы можно использовать лишь в комбинации с обладающими достаточной механической прочностью твердыми материалами (например, г8рмети-чкь Й корпус устройства, заполняемый газом).  [c.165]


Смотреть страницы где упоминается термин Материалы с малым удельным сопротивлением : [c.294]    [c.319]    [c.251]    [c.94]    [c.254]    [c.102]    [c.375]    [c.276]    [c.608]    [c.383]    [c.135]    [c.21]    [c.304]    [c.287]   
Смотреть главы в:

Электротехнические материалы  -> Материалы с малым удельным сопротивлением

Электротехнические материалы Издание 3  -> Материалы с малым удельным сопротивлением

Физические основы устройства и работы авиационных приборов  -> Материалы с малым удельным сопротивлением



ПОИСК



Сопротивление материало

Сопротивление материалов

Сопротивление удельное



© 2025 Mash-xxl.info Реклама на сайте