Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Теория упругости. Общие уравнения и простейшие примеры

ТЕОРИЯ УПРУГОСТИ. ОБЩИЕ УРАВНЕНИЯ И ПРОСТЕЙШИЕ ПРИМЕРЫ 8.1. Упругое тело  [c.236]

Для того чтобы разобраться в рассуждениях и определениях, относящихся к задачам теории упругости в наиболее общей постановке, иллюстрируем основные идеи на примере более простых задач —для уравнения Лапласа и Пуассона в плоских и трехмерных областях.  [c.86]

В гл. 5 рассматриваются некоторые общие свойства упругих и пластических стержневых систем. Существенно заметить, что вариационные принципы теории упругости, ассоциированный закон течения, свойство выпуклости поверхности нагружения для пластической системы доказываются здесь совершенно элементарно. Все эти теоремы будут сформулированы и доказаны впоследствии при более общих предположениях. Автору представляется по опыту его педагогической работы, что иллюстрация общих принципов на простейших примерах, где эти общие принципы совершенно очевидны, способствует лучшему их пониманию и усвоению. Гл. 6 посвящена теории колебаний, которая должна занять подобающее место как во втузовских, так и в университетских программах. Кроме собственно задач о колебаниях здесь излагается метод характеристик для решения задач о продольных волнах в стержнях. Этот метод настолько прост И ясен, что им можно пользоваться и его легко понять, не прослушав общего курса дифференциальных уравнений математи-  [c.12]


На примере цилиндрической оболочки мы убедились в том, что при плавно меняющейся нагрузке в большей части оболочки можно пренебречь изгибом и напряжениями от изгибающих моментов но сравнению с равномерно распределенными по толщине напряжениями от усилий Гар. Моментное напряженное состояние реализуется только в зоне краевого эффекта, протяженность кото-рой оценивается характерным линейным размером к = УНк. Для оболочки положительной гауссовой кривизны этот результат носит совершенно общий характер, схема расчета таких оболочек строится следующим образом. Сначала находится усилие в оболочке, которую представляют как тонкую, нерастяжимую мембрану, совершенно не сопротивляющуюся изгибу. Эта задача решается с помощью одних только уравнений статики и, собственно говоря, не относится к теории упругости. Соответствующая теория называется безмоментной теорией оболочек. Решение, найденное по безмоментной теории, как правило, не позволяет удовлетворить всем граничным условиям, поэтому вблизи границы рассматривается краевой эффект, связанный с изгибом. Ввиду малости области краевого эффекта, уравнения теории оболочек для этой области принимают относительно простую форму. Для вывода уравнений безмоментной теории нам понадобятся некоторые сведения из теории поверхностей, которые предполагаются известными и сообщаются для справки.  [c.423]

Основной особенностью полученного выше решения задачи является концентрация реакции на концах зоны контакта, где, вообще говоря, в составе реакции появляются сосредоточенные силы, а распределенная реакция, определяемая в общем случае соотношением (5.2), не обязательно обращается в нуль на концах зоны контакта. Все это является следствием использования теории пластин, построенной на гипотезах Кирхгофа, и иногда трактуется как серьезный порок теории в данном классе задач. С другой стороны, теория Кирхгофа является простейшей и ее применение весьма заманчиво.- Достоинство и недостатки этой теории могут быть оцене- ны лишь в сравнении с уточненными теориями или с решениями идентичных контактных задач на основе уравнений теории упругости. Это будет сделано в следующих разделах на примере рассмотренной выше простейшей задачи. Сейчас же только отметим, что считать пороком теории Кирхгофа тот лишь факт, что она приводит к странным поведениям в реакциях, еще недостаточно. Действительно, в ряде случа ев реакцию следует рассматривать как промежуточный математический объект, используемый при определении напряжений и перемещений.  [c.215]


В этой книге излагается общая теория криволинейных координат и ее применения в механике, в учении о теплоте и теории упругости разъясняется преобразование уравнений теории упругости к криволинейной системе координат и в качестве примера исследуется деформация сферической оболочки. В заключительных главах Ламе подвергает критическому анализу принципы, на основе которых строится вывод основных уравнений теории упругости. Теперь он уже не одобряет вывод уравнений по способу Навье (с привлечением гипотезы молекулярных сил), а отдает предпочтение методу Коши (в котором используется лишь статика твердого тела). Затем он принимает гипотезу Коши, согласно которой компоненты напряжения должны быть линейными функциями компонент деформации. Для изотропных материалов принятие этой гипотезы приводит к сокращению кисла необходимых упругих постоянных до двух, находимых из испытаний на простое растяжение и простое кручение. Таким путем все не-  [c.144]

Хотя о дефектах в нематиках мы многое знаем из оптическнх экспериментов, из решения уравнений теории упругости, а также из простых модельных ри сунков, только в последнее время в качестве общей схемы для классификации дефектов в физику конденсированного состояния вещества начали вводить идеи топологии [6, 7]. Классификация дефектов в нематических жидких кристаллах являет собой пример пря мюго использования теории гомотопических групп. Применение этой же теории к жидким кристаллам. с более сложными параметрами порядка является менее очевидным. Мы обсудим некоторые из этих фаз в следующих разделах.  [c.91]

Эти простейшие задачи на основании различных произвольных допущений относительно деформации тел были разрешены значительно ранее установления обпщх уравнений теории упругости. Сюда относятся случаи растяжения и сжатия призматических стержней, задача о всестороннем равномерном сжатии, чистый изгиб призматических стержней и пластинок и кручение круглых стержней. Все эти вопросы излагаются в элементарном курсе сопротивления материалов. Здесь мы еще раз возвращаемся к ним, чтобы на самых простых примерах показать общий ход решения задач теории упругости и выяснить общий метод определения перемещений точек упругого тела, если известно распределение напряжений.  [c.62]


Смотреть страницы где упоминается термин Теория упругости. Общие уравнения и простейшие примеры : [c.280]    [c.146]    [c.122]   
Смотреть главы в:

Механика деформируемого твердого тела  -> Теория упругости. Общие уравнения и простейшие примеры



ПОИСК



Общие уравнения

Пример из теории упругости

Примеры 342—344 — Уравнения

Теории Уравнения

Теория Уравнения общие

Теория упругости

Упругость Теория — см Теория упругости

Уравнения Уравнения упругости

Уравнения теории упругости

Уравнения упругого КА

Уравнения упругости



© 2025 Mash-xxl.info Реклама на сайте