Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Тепловой Генераторы

Тепловые генераторы (теплогенераторы) — представляют собой устройства, в которых основным теплотехническим процессом является процесс получения тепла в результате превращения в него химической, электрической, солнечной, атомной и других видов энергии. Примерами тепловых генераторов являются топки, конвертеры, индукционные электрические плавильные печи, резисторы электрических печей сопротивления и др. В топках основным теплотехническим процессом является выделение тепла путем превращения в него химической энергии топлива, в конвертерах — химической энергии жидкого металла, в индукционных печах и резисторах— электрической энергии. Это не значит, что в указанных тепловых устройствах не происходит других тепловых процессов (например, теплопередачи), однако они не имеют определяющего значения. Например, в конвертерах теплота, выделяющаяся от выгорания примесей, практически равномерно распределяется по всей массе жидкого металла и  [c.7]


Вместимость бункера для битума 1,4 М производительность при нанесении гидроизоляции 100 м /ч толщина слоя гидроизоляции 0,8—1.5 мм температура нагрева битума 160—180°С время разогрева битума 0,5 ч тепловой генератор форсуночный с принудительной подачей воздуха расход топлива 5 л/мии модель насоса для подачи битума НШ-32А установленная мощность 5,6 кВт дальность подачи состава 50 м габарит 2400 X 1200 X 2700 мм масса 700 кг  [c.129]

В центральных системах все их части — генератор, теплопроводы и нагревательные приборы — разобщены и представляют собой различные конструктивные устройства. Такие системы имеют значительно больший радиус действия, чем местные. В них одним тепловым генератором может обслуживаться отдельная квартира или часть здания, все здание целиком или ряд зданий в меньшем или большем количестве. Системы, обслуживающие ряд зданий в пределах одного района от одного теплового генератора (районной котельной), называют районными. В зависимости от применяемого теплоносителя центральные системы отопления подразделяют на три основные группы водяные, паровые и воздушные.  [c.11]

Таким образом, непрерывно происходит круговое движение (циркуляция) теплоносителя тепловой генератор — нагревательные приборы — тепловой генератор.  [c.12]

На тепловых электрических станциях электроэнергия вырабатывается вращающимся генератором, имеющим привод от теплового двигателя, чаще всего паровой, реже — газовой турбины. Менее распространены (в основном в удаленных районах) дизельные электростанции.  [c.184]

Регенерировать можно не только тепловую энергию, но и энергию избыточного давления. Например, если в реакционной камере / (рис. 24.4) по условиям технологии необходимо избыточное давление, то исходные продукты 2 приходится сжимать компрессором 3, затрачивая на это электроэнергию. Однако часть этой энергии, а иногда даже больше энергии, чем затрачено (если, например, в реакторе J увеличивается объем газов), можно вернуть (регенерировать) за счет расширения получающихся продуктов 4 в турбине 5. Электромашина 6 при этом играет роль пускового двигателя, а также источника недостающей или потребителя избыточной мощности (в последнем случае электромашина работает в режиме генератора). Хорошим примером использования энергии давления является тур-  [c.205]

При температуре гелия 1500° С возможно получение неравновесной ионизации плазмы и осуществление экономичного процесса преобразования энергии в МГД-генераторе теплового потока с объемной плотностью 20—100 МВт/м канала [6].  [c.6]


В конструкциях магнитогидродинамических генераторов с холодными стенками проблема электродов решается применением охлаждаемых металлических поверхностей (нержавеющая сталь, медь и др.). Создание холодных изолирующих стенок представляет еще более сложную задачу, так как в крупных МГД-генераторах это сопряжено с большими тепловыми потоками, что  [c.210]

ОТ источника лучистой энергии 2 — приемник тепла 5 — потери излучением иН —аккумулирование с ЫН 5 — аккумулирование с НаР б — потери излучением ЫаР 7 — котел 5 — перегреватель 5 —1-й промежуточный подогреватель /б —2-й промежуточный подогреватель //—1-я ступень турбины 2 — 2-я ступень турбины /5 — 3-я ступень турбины 14 — генератор переменного тока /5 — радиатор-конденсатор /б — нагрузка 15 кВт /7 —устройства управления /б — иасос — тепловые потоки ------—трубопроводы для жидкости —паропроводы ------------------механические связи  [c.220]

МГД-генераторы электрической энергии (обзор). — Ияф. бюлл. Прямое преобразование тепловой энергии в электрическую и топливные элементы , 1967, вып. 4 2 (65), с. 5—>52.  [c.252]

Рассмотрим пример расчетного проектирования синхронных генераторов (СГ) с принудительным охлаждением. Проектирование таких генераторов требует выполнения большого комплекса расчетов (электромагнитных, механических, тепловых, а(эро- и гидродинамических) в различных режимах работы. Большой объем вычислений при многократном повторении в процессе оптимального проектирования недопустимо увеличивает машиносчетное время. Поэтому, используя специфику проектируемых СГ, надо не только провести разделение расчетов на быстрые и медленные, но и осуществить дополнительную декомпозицию задачи оптимального проектирования на подзадачи меньшей размерности.  [c.119]

Термодинамика гальванических и топливных элементов. Применим уравнение (10.2) к электрохимическим генераторам — гальваническим и топливным элементам. Для этого установим связь между э.д.с. элемента и тепловым эффектом реакции, происходящей в элементе при его работе, в случае, когда изменение его внутренней энергии идет не на выделение теплоты, а на работу электрических сил.  [c.179]

К. п. д. термогенераторов сравнительно низкий и составляет 3—5%, а в лучшем случае 8%. А. Ф. Иоффе считал, что этот предел в ближайшее время может повыситься до 10—12%, а может быть и до 15% при источниках теплоты порядка 700—800° С. Если учесть, что наиболее совершенные тепловые электростанции достигают уже к. п. д. 40—45%, то становится ясным, что термоэлементы из твердых полупроводников не могут быть использованы в большой энергетике . Зато по мере упрощения технологии, уменьшения толщины термобатарей и их удешевления будет расти применение термоэлектрических генераторов в малой энергетике (где к. п. д. отступает на задний план по сравнению с простотой конструкции, массой и габаритами) и в утилизации тепловых отходов высокотемпературных тепловых машин.  [c.606]

В рассмотренных принципиальных схемах термотрансформаторов в установку входили двигатель, производящий механическую работу, и тепловой насос, потребляющий эту работу. Однако можно себе представить схему термотрансформатора, в которой оба эти элемента отсутствуют. Такая схема имеет место, например, при использовании в качестве термотрансформатора абсорбционной машины. В установке с абсорбционной холодильной машиной (если пренебречь небольшой величиной работы жидкостных насосов) за один цикл затрачивается в генераторе при температуре t en теплота поглощается от охлаждаемого тела в испарителе при температуре Д теплота q и выделяется при температуре заключенной в интервале между t en и в конденсаторе и абсорбере, теплота + a- Если испаритель имеет  [c.631]

Благодаря этому он будет осуществлять колебания тока точно на резонансной частоте и используется в высокочастотных усилителях и генераторах. Существование области отрицательного сопротивления не связано с тепловым возбуждением носителей, поэтому туннельный диод успешно функционирует и при гелиевых температурах.  [c.362]

Термодинамическая эффективность циклов абсорбционных холодильных машин определяется тепловым коэффициентом, равным отнощению холодопроизводительности к сумме затраченной в генераторе теплоты и теплоты, эквивалентной работе насоса. Считаем, что в цикле 1 кг вещества, тогда  [c.180]


Наиболее актуальные задачи, которые решают с использованием термодинамики и теплопередачи создание летательных аппаратов, в том числе космических многоразового действия проектирование тепловых и атомных электрических станций, магнитогидродинамических генераторов (установок для прямого преобразования теплоты в электрическую энергию), холодильных установок умеренного холода, холодильных установок глубокого холода, например, для получения жидких кислорода, азота, водорода, гелия и других газов проектирование машин и разработка технологических процессов в пищевой, химической и других отраслях промышленности. В перечисленных задачах термодинамические и тепломассообменные процессы играют важ ную, а иногда и определяющую роль при выборе конструкции.  [c.3]

Ответственным оборудованием на тепловой электростанции являются масляные насосы. Масляные насосы предназначены для маслоснабжения систем смазки турбины и генератора и системы регулирования.  [c.282]

Первые три способа или предполагают сжигание топлива, или вызывают необходимость поддержания достаточно высоких температур рабочего процесса, который осуществляется в узком интервале температур, т. е. используют в той или иной мере теплоту. Поэтому КПД термоэлектрических генераторов, МГД-генераторов, термоэмиссионных преобразователей оказывается сравнительно низким. Эти генераторы и преобразователи могут иметь лишь вспомогательное значение в соединении с машинными способами получения электрической энергии тепловыми двигателями и установками.  [c.504]

Термоэлектрические генераторы, термоэмиссионные преобразователи, магнитогидродинамические генераторы и квантовые преобразователи представляют собой двухтемпературные установки, причем поддержание рабочей температуры осуществляется в ряде случаев посредством сжигания топлива. Наличие двух температурных уровней обусловливает циклический характер работы энергетической установки с подобным преобразователем и сближает такую установку с тепловым двигателем. Различие состоит лишь в том, что в рассматриваемом преобразователе нет движущихся узлов, как это имеет место в тепловом двигателе, т. е. преобразование энергии является без-машинным. С точки зрения технологии указанное отличие может оказаться важным, однако принципиального значения Б термодинамическом смысле оно не имеет.  [c.568]

Наиболее типичной местной системой отопления является отопительная печь. В ней тепловым генератором служит топливник, в котором происходит горение топлива, теплопроводами служат дымообороты, по которым перемещаются продукты горения топлива (дымо-  [c.10]

Государственный первичный эталон единицы плотности щумово-го радиоизлучения в диапазоне 2,6—17,4 Гц (хранящийся во Всесоюзном ордена Трудового Красного Знамени научно-исследовательском институте физико-технических и радиотехнических измерений — ВНИИФТРИ) состоит из группы волноводных тепловых генераторов щумового радиоизлучения и группы прецизионных компараторов щумового радиоизлучения.  [c.48]

Технологическое оборудование для сварки когерентным световым лучом квантового генератора (лазера) или лазерной срарки используют в радио- и электронной промышленности. Благодаря острой фокусировке возможно сосредоточение очень большой тепловой энергии на площадках, измеряемых сотыми и тысячными долями миллиметра. Принципиально возможно создание лазера, пригодного для сварки очень толстого металла, но процесс плавления металла становится в этом случае практически неуправляемым. Поэтому в настоящее время лазерную сварку применяют для соединения металла сверхмалых толщин (металлическая фольга), проволок малого диаметра и т. п., т. е. изделий, которые не требуют разделки кромок. Основные типы сварных соединений — нахлесточные и стыковые.  [c.16]

Низкотемпературная плазма (температура IOOOK) находит применение в газоразрядных источниках спета и в газовых лазерах, в термоэлектронных преобразователях тепловой энергии в электрическую и Б магиитогидродннамических (МГД) генераторах.  [c.290]

Качественно новые явления наблюдаются при охлаждении пористых электродов электроразрядных устройств и МГД-генератора вдувом инертного газа с добавкой ионизирующейся присадки щелочных металлов. В этом случае наряду с тепловой и химической защитой электродов имеет место и защита от эрозии, так как добавление в охладитель ионизирующейся присадки позволяет достигнуть высокой плотности тока на катоде до 15 АУсм в режиме распределенного бездугового разряда при температуре рабочей поверхности 1200...1600 К.  [c.8]

На примере конструкции генератора SNAP-IIm можно показать роль покрытий с высокой излучательной способностью в системе теплового регулирования, которое осуществляется изменением площади излучающей поверх-  [c.197]

Результаты испытаний отражены на рис. 8-20. Как и ожидалось, изменение температуры основания ребер излучателя от 420 до 520 К вызвало изменение в выходной мощности максимальное значение мощности (около 30 Вт) было получено при 420 К- При понижении их температуры до 340 К, а также и при повышении до 520 К генератор терял около 10% своей мощности. Исследователями было выбрано покрытие с высокой излучательной способностью ( Рокайд-Z ), позволяющее генератору работать в оптимальном тепловом режиме.  [c.200]

Турбоэнергетические системы. Использование солнечной радиации находит применение и в традиционной двухступенчатой схеме преобразования энергии тепловая— -механическая— -электрическая. В частности, NASA разрабатывает солнечные турбоэлектрические генераторы, известные под названием Санфлауэр (подсолнечник) [169]. Одной из наиболее сложных проблем является создание системы охлаждения. Применение покрытий позволяет поддерживать оптимальные температурные параметры цикла, уменьшать площадь и массу радиатора. На рис. 8-24 представлена схема солнечной энергетической системы с турбогенератором [170]. Теплота, полученная от выхлопных газов, и скрытая теплота конденсации излучаются с поверхности радиатора. Коэффициент полезного действия установки зависит от температуры котла, которая ограничивается жаропрочностью материалов, и от температуры радиатора. Без 204  [c.204]


Фотоэлектрическое преобразование солнечной энергии. Современные термоэлектрические генераторы (обзо р). — Инф. бюлл. Прямое иреобразование тепловой энергии в электр ическую. и тО П-лмвные элементы , 4967, вып. 12 (65), с. 53—I Ol.  [c.251]

Современные паровые турбины обладают высоким КПД преобразования кинетической энергии струи пара в механическую энергию, превышающим 90%. Поэтому электричеокие генераторы практически всех тепловых и атомных электростанций мира, дающие более 80% всей вырабатываемой электроэнергии, приводятся в действие паровыми турбинами.  [c.108]

Тепловая электроетавция. Более 90% используемой человечеством энергии получается за счет сжигания угля, нефти, газа. Наиболее удобной для распределения между потребителями является электрическая энергия переменного тока. Для преобразования энергии химического горючего в электроэнергию используются тепловые электростанции. На тепловой электростанции освобождаемая при сжигании топлива энергия расходуется на нагревание воды, превращение ее в пар и нагревание пара. Струя пара высокого давления направляется на лопатки ротора паровой турбины и заставляет его вращаться. Вращающийся ротор турбины приводит во вращение ротор генератора электрического тока. Генератор переменного тока осуществляет превращение механической энергии в энергию электрического тока.  [c.238]

Используя электроироводиую жидкость пли газ, можно создать генератор электрического тока, в котором осуществляется прямой переход тепловой энергии в электрическую находят применение магнитные дозаторы, расходомеры и насосы для перекачки ртути и жидких металлов известны и другие области применения магнитной гидрогазодннамикп в технике, например в приборостроении.  [c.178]

В настоящее время наибольшее научно-техническое развитие получил магнитогидродинамический метод (МГД-,метод) прямого преобразования энергии. Идея этого метода основана на том, что при пересечении проводником линий индукции в нем возникает ЭДС. В МГД-генераторе таким проводником является электропроводящий газ (плазма). Высокотемпературный газ (2500— 3000°С) в МГД-генераторе выполняет двойную роль в сопле перед генератором внутренняя энергия газа преобразуется в кинетическую энергию noTOiKa, т. е. газ -является термодинамическим рабочим телом, а в генераторе кинетическая энергия потока преобразуется в электрическую энергию, т. е. газ выполняет роль силовой обмотки электрической машины. Можно поэтому говорить, что МГД-гбнератор представляет собой совмещенную с тепловым двигателем электрическую машину, а термодинамический цикл энергетической установки с МГД-генератором принципиально ничем не отличается от известных циклов газо- и паротурбинных установок. Использование высокой температуры рабочего вещества (которую вполне выдерживают неподвижные части генератора) приводит к генерации электроэнергии МГД-методом с КПД до 50—60%.  [c.69]

Газотурбинные уелановки, являясь относительно молодым типом двигателей, находят все большее применение в народном хозяйстве, Они используются в авиации, а также для привода электрических генераторов тепловых электростанций, для привода насосов и компрессоров на магистральных газо- и нефтепроводах, в судовых установках и на железнодорожном транспорте. Малая удельная стоимость ГТУ и возможность быстрого ввода в работу позволяют также использовать их в качестве пиковых и аварийно-резервных агрегатов энергетических систем.  [c.81]

Таким образом, одноконтурные параметрические генераторы обладают тем свойством, что фазы параметрически возбуждаемых в них колебаний зависят от начальных условий. Если начальные условия случайны (например, тепловой плум), то фаза возбужденных колебаний тоже будет случайной. При непрерывном действии (енератора накачки подбором начальных условий можно возбудить колебание либо в одной, либо в другой (противоположной) фазе, условно обозначаемых О и я. Фаза этих колебаний относительно фазы напряжения накачки сохраняется в параметрическом генераторе сколь угодно долго.  [c.183]

Основной поток проводящей жидкости создают внешние для рассматриваемого поля силы. За счет пересечения основного потока с силовыми линиями заданного магнитного поля возникает электрический ток. Все установки, создающие электрический ток таким образом, будем условно называть генераторами. К ним прежде всего относятся собственно магнитогидродинамические генераторы, преобразующие тепловую энергию в электрическую  [c.406]

В ряде научно-исследовательских институтов и высших учебных заведений (МАИ, МВТУ, МИФИ, МИХМ, МЭИ) продолжаются интенсивные исследования процессов тепло- и массообмена изучаются физические основы процессов, разрабатываются новые и совершенствуются старые методы расчета. В настоящее время во всем мире актуальны процессы теплообмена летательных аппаратов и в том числе космических многоразового действия в активных зонах реакторов в магнитогидродинамических генераторах (установках для прямого преобразования теплоты в электрическую энергию) в газотурбинных установках. Разрабатываются способы тепловой защиты высокоскоростных летательных аппаратов.  [c.4]

По таблицам Приложения при = 623 К находим v = =- 1,74 дм7кг. При Гж = 573 К w = 1,40 дм кг. Средний удельный объем равен 1,57 дм /кг. Объемный расход циркулирующей воды равен Mv = = 500-1,57 = 790 дм /ч = 0,22 дм /с. При диаметре 25 мм внутреннее сечение трубопровода / = 0,049 дм и скорость воды W = Mv/f = 0,22/ /0,049 = 4,5 дм/с. При 573 К Рг = = 713 кг/м , при 623 Кр1= 575 кг/м , следовательно, р — Hg (ра — р ) == = 3,5 9,81 (713 — 575) == 4738 Па. Условие циркуляции будет выполняться при р > Ар. Поверхность нагрева генератора теплоты может быть определена по плотности теплового потока NJq = 29,08/ /11,05 = 2,65 м , тогда при диаметре трубки 35/25 мм длина трубок = 28 м. Поверхность нагрева в дистилляторе при k = 814 Вт/(м -К) и разности температур АГ = 65 К равна 0,55 м или 5,85 м трубки. Длина соединительных трубок / з = 15 м  [c.302]


Смотреть страницы где упоминается термин Тепловой Генераторы : [c.808]    [c.7]    [c.202]    [c.72]    [c.141]    [c.200]    [c.2]    [c.183]    [c.6]    [c.784]    [c.183]    [c.302]   
Машиностроение Энциклопедический справочник Раздел 4 Том 12 (1949) -- [ c.672 ]



ПОИСК





© 2025 Mash-xxl.info Реклама на сайте