Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Железо-никель, система - Диаграмма состояния

Как и ожидалось из сравнения металлохимических свойств титана и металлов группы платины, в этих системах существуют первичные твердые растворы и интерметаллические соединения. Количество соединений при переходе от рутения к родию и палладию и от осмия к иридию и платине увеличивается. В составе, структуре и свойствах этих соединений при определенном сходстве наблюдается и существенное отличие (рис. 6). Для сравнения рассмотрим также соединения, образующиеся в сплавах титана с железом, кобальтом и никелем [3, 17]. (Диаграммы состояния двойных систем титана с железом, кобальтом и никелем на рис. 6 приведены из справочника Р. П. Эллиота Структуры двойных сплавов , системы с платиной — по данным [22 ).  [c.187]


Железо-молибден, система — Диаграмма состояния 3 — 329 Железо-молибден-углерод, система — Изотермическое сечение 3 — 336 Железо-никель, система — Диаграмма состояния 3 — 328 Железо-титан-углерод, система — Изотермическое сечение 3 — 336 Железо-углерод-легирующий элемент, система  [c.77]

Системы железо—никель и железо—хром—никель подробно рассмотрены в работе [56]. Сплавы железа с никелем образуют в основном у-твердые растворы. Никель сильно снижает критические точки, фиксирующие превращение у- в а-железо, причем точки на диаграмме состояния, соответствующие превращению а- в у-железо, с увеличением содержания никеля смещаются вверх, а точки, соответствующие превращению у- в а-железо, смещаются вниз. Превращения у —> а при охлаждении и а у при нагреве никелевых и хромоникелевых сталей происходят с большим гистерезисом.  [c.158]

На сечении диаграммы состояния тройной системы Fe—Сг—Ni при 1100 "С (рис 304) этим сплавам соответствуют двухфазные области a -fv (основа никель или железо-f никель) и a-fv (основа железо), где а -фаза с о. ц. к. решеткой обогащена хромом. При более высоких температурах эти сплавы являются однофазными а (о, ц. к.) в сплавах на основе железа и у (г. ц. к.) в сплавах с высоким содержанием никеля.  [c.577]

Рис. 15. Изотермические разрезы диаграмм состояния системы железо—хром— никель а — при [100°С б — при 800° С в — при 400° С Рис. 15. <a href="/info/117839">Изотермические разрезы</a> <a href="/info/166501">диаграмм состояния системы</a> <a href="/info/189690">железо—хром</a>— никель а — при [100°С б — при 800° С в — при 400° С
Рис. 55. Диаграмма состояния системы железо — никель 10 Рис. 55. <a href="/info/166501">Диаграмма состояния системы</a> железо — никель 10

Рис. 122. Диаграмма состояния системы железо—никель Рис. 122. <a href="/info/166501">Диаграмма состояния системы</a> железо—никель
Рис. 123. Диаграмма состояния системы железо — хром—никель при 0,10% С с указанием положения структурных составляющих при быстром охлаждении из области наибольшего распространения аустенита Рис. 123. <a href="/info/166501">Диаграмма состояния системы</a> железо — <a href="/info/168346">хром—никель</a> при 0,10% С с указанием положения <a href="/info/335019">структурных составляющих</a> при быстром охлаждении из области наибольшего распространения аустенита
Рис. 124. Горизонтальные сечения тройной диаграммы состояния системы железо — хром — никель при 800 и 650°С [190] Рис. 124. Горизонтальные сечения <a href="/info/188756">тройной диаграммы состояния системы</a> железо — хром — никель при 800 и 650°С [190]
На рис. 242 приведена диаграмма состояния системы Fe—Мп по последним данным. Сплавы, богатые марганцем, практически не находят применения, вопросы эти рассмотрены в работе А. Т. Григорьева с сотрудниками [359]. Наибольший интерес представляют сплавы, богатые железом. Марганец относится к элементам, расширяющим 7-область при образовании твердого раствора [366, 367]. В этом отношении между влиянием марганца и никеля в их сплавах с железом наблюдается большая аналогия.  [c.415]

Золото образует непрерывные ряды пластичных твердых растворов с никелем, серебром, палладием, медью. На диаграммах состояния Аи—Ni и Аи—Си имеет место минимум температуры плавления наинизшая температура плавления твердых растворов меди, содержащих 18% Аи, —905° С и 82,5% Аи — 9 ° С. Несколько менее интенсивно снижают температуру плавления золота железо и кобальт, образующие с ним диаграммы состояния перитектического типа со стороны золота в системе Аи—Fe образуется непрерывный ряд твердых растворов с наинизшей температурой плавления, со стороны золота в системе Аи—Со — эвтектика.  [c.135]

Критические точки технических сортов стали (даже углеродистой), содержащих примеси, не совпадают обычно по температуре с точками диаграммы состояний системы железо — углерод. Повышенное содержание марганца или никеля позволяет снизить температуру нагрева для закалки стали, а кремний, хром и вольфрам, наоборот, требуют ее повышения.  [c.182]

Диаграммы состояния типа железо — цементит (с эвтектикой и эвтектоидом) системы циркония с серебром, бериллием, кобальтом, хромом, медью, железом, марганцем, молибденом, никелем, ванадием, вольфрамом, водородом.  [c.443]

Очень важно влияние легирующих эле.ментов на критические точки железа Лз и Л4. Это влияние можно проследить по диаграмме состояния двойной системы железо— легирующий элемент. Одна группа элементов (никель, марганец) понижает  [c.179]

РИС. 50. Диаграмма состояния системы железо — никель  [c.179]

Хром применяется в жаростойких сплавах в количестве 2—35 /о- Из диаграммы состояния системы железо — хром ясно, что мартенситные стали содержат 2—14 /о Сг, а ферритные 14—35 /о Сг. Однако эти границы могут сдвигаться из-за присутствия других элементов. Например, элементы, способствую-ш,ие устойчивости аустенита (углерод, азот, марганец и никель), расширяют область мартенситных сталей в сторону большего содержания хрома, в то время как кремний, вольфрам, молибден, титан, ниобий и алюминий сужают ее, снижая верхний предел содержания хрома.  [c.669]


Были исследованы бинарные системы и диаграммы состояния, построенные для целого ряда сплавов тория. Для многих из исследоваииых систем характерно образование нескольких интерметаллических соединена. Никель и кобальт образуют по пять иитерметаллических соедииений с торием железо и алюминий - - по четыре, а марганец, висмут, кремний и мель — по три. Для некоторых других металлов характе 1но образование с торием одного или двух интерметаллических соединений. Некоторые иитерметалли-ческие соединения торня, главным образом с медью, серебром, золотом, висмутом и свинцом, являются пирофорными.  [c.811]

Легирующие элементы оказывают большое влияние на точку Л,, соответствующую температуре перехода перлита в аустенит (рис. 93, а). Никель и марганец снижают температуру А , а Т1, Мо, 31, У и другие элементы повышают температуру Л1 (см. рис, 93, а). Легирующие элементы уменьшают эвтектондную концентрацию углерода (рис. 93, б) к предельную растворимость углерода в аустените, сдвигая точки 5 к на диаграмме состояния Ре—С влево. Как видно из рис. 94, где приведены вертикальные разрезы тройной диаграммы состояния Ре—Мп—С и Ре—Сг—С, перитектическое, эвтектическое и эвтектоидное превращения протекают не при постоянной температуре, как в двойных системах, а в некотором интервале температур. В системе р е—Мп.—С у-фаза с увеличением содержания марганца существует и в области более низких температур. В системе Ре—Сг—С с возрастанием концентрации хрома область существования у-ф>ззь( сужается. Состав карбидной фазы (К) в марганцовистых сталях соответствует соединению (РеМп)8С, в котором часть атомов железа. замещена атомами марганца. В хромистых сталях образуются (Ре, Сг)зС и специальные хромистые карбиды, состав и структура которых зависят от содержания углерода и хро.ма. При низком содержании углерода и высоком содержании хрома образуются ферритные стали, не претерпевающие полиморфного превращения (рис. 94, б).  [c.137]

Установлено, что по структуре и фазовому составу электроосажденных сплавов железо—никель—хромовые сплавы, полученные из сульфамидного электролита, отличаются от нержавеющих сталей. Электроосажденные сплавы имеют мелкодисперсное строение и представляют собой преимущественно а-фа-зу. Термообработка при температуре 800—850° С в защитной атмосфере вызывает укрупнение зерен и изменение фазового состава сплава в соответствии с диаграммой состояния системы железо—никель—хром. Табл. 1, рис. 4, библ. 8.  [c.124]

Наиболее подробно структурные изменения при спинодальном распаде изучены в сплавах системы Си — N1 — Ре, находящихся по составу в центре области расслоения на диаграмме состояния. На электронномикроскопических снимках, полученных методом просвечивания тонких фольг, светлые участки относятся к областям, обогащенным медью, а темные — к обогащенным железом и никелем (рис. 168). В твердом растворе Си— N1 — Ре, характеризующемся, как и многие другие кристаллы с кубической решеткой, значительной анизотропией модуля упругости, спинодальный распад идет вдоль каждого из трех упруго-мягких направлений <100>. Поэтому первоначально при спинодальном распаде ь сплавах Си — N1—Ре образуется модулированная структура, состоящая из стержнеобразных областей, разделенных размытыми границами ( корзиночное плетение на рис. 168, а). По мере увеличения времени старения растут амплитуда концентраций и длина концентрационной волны (Л) — модулированная структура грубеет (рнс. 168, б), а границы между когерентными выделениями становятся менее раз1мытыми. Упругие деформации приводят к  [c.291]

ТИХ]), т.е. в районе неравновесного солидуса (см. рис. 10.11). Склонность к трещинам возрастает при увеличении ТИХ], снижении пластичности в ТИХ], а та1сже при росте темпа растягивающих деформаций в ТИХ), совместно приводящих к исчерпанию пластичности (8 > бщт) и образованию трещин. Эти фаеторы структурно-чувствительны. Структура металла шва и ЗТВ зависит от химического состава и теплофизических условий кристаллизации. Роль химического состава в первом приближении оценивают по псевдобинарным диаграммам состояния системы Ре - Сг - № при постоянном содержании железа (рис. 10.12). Согласно этой диаграмме в стабильно аустенитных сталях с соотношением СГэкв/Н экв <1,12 кристаллизация протекает путем выделения из жидкости у-твердого раствора до полного исчезновения жидкой фазы. При большем соотношении Сгэкв/Н1экв < 1,3 в интервале температур между ликвидусом и солидусом последовательно выделяются из жидкости две твердые фазы аустенит и междендритный эвтектический феррит, который образуется из последних порций жидкой фазы, обогащенной хромом и никелем по ликвационному механизму.  [c.53]

Диаграмма состояния системы железо — никель (рис. 24) дана в редакции [1]. Температуры затвердевания сплавов железо- иикель и превращение определены достаточно надежно, хотя величина интервала ликвидус—солидус окончательно не установлена вероятно, она составляет несколько градусов. Границы а/а-f y = и yja + 4- Y-фаз нанесены по рентгенографическим и магнитометрическим данным [2], которые были получены в условиях наиболее приближающихся к равновесным (см. также результаты работ [2—7]). Однако эти данные для температур ниже 300° нельзя считать окончательными из-за крайне медленно протекающих превращений в сплавах железа с никелем. На существование соединений в системе Ре—Ni указывалось еще в старых работах [8]. На рис. 24 пока зана область образования фазы PeNia, имеющей, по данным [9- 14], упорядоченную структуру. Согласно работе [12], процессы упорядочения охватывают широкую область концентраций (примерно от 50 до 80% никеля). Наиболее вероятно, что других интерметаллияеских соединений в системе не образуется, хотя предположения об их существовании имеются.  [c.468]


В случае сплавов на основе меди и серебра, когда растворители и растворяемые элементы находятся в одном ряду периодической системы, обнаруживается отчетливая корреляция между формой диаграммы состояния и электронной концентрацией. Зависимости подобного типа можно иногда обнаружить и в других сплавах при условии благоприятного размерного фактора. Например, у сплавов на оотове железа размерный фактор для титана лежит на границе благолриятной зоны, в то время как ряд элементов — ванадий, хром, марганец, кобальт, никель, медь — находится в пределах этой зоны.  [c.146]


Смотреть страницы где упоминается термин Железо-никель, система - Диаграмма состояния : [c.14]    [c.555]    [c.557]    [c.215]    [c.166]    [c.557]    [c.6]    [c.180]    [c.90]   
Машиностроение Энциклопедический справочник Раздел 2 Том 3 (1948) -- [ c.328 ]



ПОИСК



Диаграмма состояния

Диаграммы состояний систем

Железо Диаграмм

Железо диаграммы состояния

Железо — никель

Никель

Система железо — бор

Система железо — никель

Системы Ag-Cu - Диаграмма состояни

Состояние системы



© 2025 Mash-xxl.info Реклама на сайте