Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Состояние объекта (системы) частично

Для объектов БТС характерны частичные отказы, в большинстве своем носящие характер постепенного ухудшения эксплуатационных свойств системы и относящиеся к числу постепенных отказов. К ним относятся уменьшение проходной площади поперечного сечения трубы из-за выноса песка, накопление конденсатов или гидратов в трубопроводах и отложений парафина на стенках нефтепроводов, что приводит к увеличению коэффициентов гидравлического сопротивления (или уменьшению эффективности) линейных участков. Утечки газа, если они прогрессируют (например, из-за коррозионных процессов), также являются примером постепенной потери работоспособности. Они приводят к тому, что из полностью работоспособного состояния объект переходит в частично работоспособное состояние.  [c.21]


Смешанные функции Грина. Задача состоит в том, чтобы вывести кинетическое уравнение для функции Вигнера нри t > если начальное состояние системы описывается статистическим оператором (6.4.2). В принципе можно применить метод временных функций Грина, заданных на контуре Келдыша-Швингера С (см. рис. 6.6), но мы сразу же столкнемся с серьезной проблемой. Дело в том, что при вычислении средних значений с начальным статистическим оператором (6.4.2) нельзя пользоваться теоремой Вика и, следовательно, на контуре С не существует обратная одночастичная функция Грина G (l,l ). Иначе говоря, мы не можем записать уравнения движения для G(l,l ) в виде уравнений Дайсона (6.3.29) и (6.3.30). Придется работать непосредственно с цепочкой уравнений Мартина-Швингера для гриновских функций и расцеплять ее на каком-то этапе. Такой подход применялся, например, в работе [153]. К сожалению, он не позволяет продвинуться дальше низшего порядка теории возмущений по начальным корреляциям, так как уравнения цепочки быстро усложняются. В связи с этим напомним два основных достоинства уравнения Дайсона. Во-первых, оно определяет общую структуру кинетического уравнения. Во-вторых, приближения делаются только в массовом операторе, который представляет собой результат частичного суммирования бесконечных рядов теории возмущений для цепочки Мартина-Швингера. Поэтому желательно сформулировать схему вывода кинетического уравнения так, чтобы в ней, в той или иной форме, фигурировало уравнение Дайсона. Мы покажем, что и в случае начального состояния с корреляциями можно вывести уравнение Дайсона, но не для гриновской функции G(l,l ) на контуре Келдыша-Швингера, а для более общего объекта — матричной смешанной функции Грина, заданной на расширенном контуре G. Этот контур лежит в плоскости ( ,ж), как показано на рис. 6.7.  [c.64]

Для предотвращения тяжелых отказов (разрыв трубы) на газопроводах, находящихся в неудовлетворительном техническом состоянии, производится снижение рабочего давления. Тем самым уменьшается производственная мощность объекта, что должно быть квалифицировано как частичный отказ системы.  [c.21]

Робототехнические системы, особенно с адаптивными и интеллектуальными роботами, нуждаются в микропроцессорном управлении. Здесь речь идет о распределенном, а не централизованном управлении. Распределенное машинное управление возможно либо с немощью микроЭВМ, либо с помощью микропроцессорных блоков функционального назначения (БФН) [12]. Преимущественное предпочтение отдается БФН. Когда в алгоритмах встречаются необходимые операции с матрицами, то самым удобным языком встроенного программирования оказывается язык с по-следовате.льной логикой диапрограмм перехода состояний. За универсальность пришлось платить снижением реального быстродействия и объемом памяти. Число управляющих ЭВМ не монеет быть слишком большим, так как это требует использования для управления распределенными объектами весьма развитой периферии. Трудности возникают также при взаимодействии программистов с операционными системами. Частично их можно решить разработкой специализированных операционных систем и специальных языков. Однако принципиальное решение проблемы os-Дания экономичных управляющих комплексов получено лишь в последние годы. Появление мини- и микроЭВМ, микропроцессорной техники дало возможность реализовать децентрализованный принцип построения сложных систем управления. Применение микропроцессорной техники для управления роботами существенно сократило и число и объем задач, для решения которых необходимо использовать управляющую ЭВМ.  [c.75]


Наблюдаемость. Понятие наблюдаемости характеризует качественное видовое свойство измерительной системы, рассматриваемой в совокупности с объектом управления в качестве источника информации о состоянии объекта управлення. Свойством наблюдаемости определяются возможности измерительной системы по полному или частичному воспроизведенню информации о состоянии объекта управления путем наблюдения значений измеряемых параметров в условиях отс)тствня шумов измерений.  [c.18]

Несмотря на то что конечные цели равновесной и неравновесной теории различаются весьма сильно, математические методы, используемые в обеих областях, удивительно похожи. Мы старались подчеркнуть это сходство при нашем изложении, поскольку оно представляет собой общее специфическое свойство, придающее статистической механике в целом ее своеобразное неповторимое очарование. Для примера такого сходства назовем методы разложения в ряды, диаграммную технику, а также метод ренормировки и частичного суммирования. Несмотря на то что эти методы применялись к различным объектам, они обладают существенным структурным сходством. Именно по этим соображениям мы сначала решали большинство задач (точно или приближенно) для равновесного случая, а затем как бы повторяли эти решения (в соответствующих приближениях) для неравновесных случаев. Это было сделано, разумеется, далеко не случайно. В сущности, если говорить об основах, и равновесные, и неравновесные задачи сводятся к исследованию гамильтониана системы. Просто эта функция играет различную роль в двух теориях она определяет функцию распределения при равновесии, но она же порождает движение из состояния равновесия.  [c.352]

Во второй части книги даются некоторые теоретические сведения и практические примеры, связанные с характеристиками и схемами регулирования теплообменников, с системами регулирования уровня и расхода, с регулированием дистилляционных колонн, а также с регулированием температуры, состава и величины pH в химических реакторах. Выбор этих тем частично объясняется личными склонностями автора, а также желанием автора показать определенные классы объектов. Трубчатый теплообменник следует рассматривать как пример системы с распределеннььми параметрами. Вопросы регулирования расхода представляют самостоятельный интерес, поскольку в этом случае инерционность собственно объекта значительно меньше, чем инерционность датчика и регулятора. При описании систем регулирования уровня основное внимание уделяется вопросам усредняющего регулирования, возникающим также при регулировании давления. Характеристики дистилляционных колонн зависят от гидродинамики, теплопередачи и массообмена при этом основная трудность состоит в выборе регулируемых величин. Химические реакторы особенно интересны, поскольку они являются примером систем, неустойчивых в разомкнутом состоянии.  [c.6]

Пульт представляет оператору-хроматографисту достаточно большие возможности задания режимов работы прибора и наблюдения за его состоянием. Пульт позволяет осуществить запуск прибора, вывод анализатора на режим, прекращение анализа с выводом прибора в исходное состояние указать тип анализа ввести полностью или частично информацию, необходимую для задания режима работы прибора — температуру, температурную программу, давление для объектов, указанных выше ввести полностью или частично параметры обработки хроматограммы — градуировочные коэффициенты, временные окна для идентификации компонентов смеси, ряд других величии вывести на индикационные элементы значения температур в точках измерения, вычисленные значения давления, расхода ввести информацию справочного характера — текущее время (для счетчика времени), число анализов (для усреднения результатов по нескольким анализам) и т. п. инициировать печать условий анализа, контролируемых параметров, результатов анализа, значений концентраций, усредненных по нескольким анализам индицировать состояния неисправности элементов системы задать временную программу управления газовой схемой прибора.  [c.145]

Очевидно, что колебания решетки должны влиять на поведение электронов в твердом теле. Например, в металлах продольные колебания ионов вызывают накопление зарядов. Соответствующим. образом экранированные, эти заряды создают потенциал, зависимость которого от координат имеет такой же вид, как зависимость от координат амплитуды колебаний решетки. Этот потенциал, конечно, входит в полный гамильтониан электронов и определяет взаимодействие между колебаниями решетки и электронами. Задачу о взаимодействии электронов с фононами в принципе можно было бы решить точно и тем самым найти собственные состояния системы, состоящей из электронов и фононов. Эта задача была нами частично решена, когда мы рассматривали электронное экранирование при исследовании колебательных мод. При этом некоторая часть взаимодействия электронов с фононами была учтена точно, и мы получили в результате экранированное поле. При построении поляронов в ионных кристаллах мы столкнулись с другим случаем, когда некоторая часть взаимодействия между электронами и фононами включается в определение электронных состояний. В большинстве случаев использование таких состояний приводило бы к значительным неудобствам. Часто гораздо удобнее находить приближенные собственные состояния как электронов, так и решетки и считать остаточное взаимодействие возмущением, которое мы назовем электрон-фононным взаимодейстшем. Электрон-фононное взаимодействие определяется неоднозначно. Его вид зависит от того, в какой мере мы включили исходное взаимодействие в определение объектов, которые мы называем электронами и фононами. Однако для всех изучаемых систем процедура  [c.436]


ТОР Z — сумма по всем различным в квантовом смысле -частичным состояниям системы, Z — сумма по всем различным в классическом смысле микроскопическим состбяниям. С точки зрения квантовой механики набор iVp — это одно состояние системы, но если мы отнесемся к частицам как к классическим объектам, и в связи с этим перенумеруем их, то классическое Микроскопическое состояние определится не только набором чисел iVp , как в случае безымянных частиц, но еще и расположением номеров на самих частицах. Сумма по этим"расположениям для каждого  [c.146]

В линейной теории колебаний известен закон, согласно которому в линейной системе колебания с частотами, отличными от частот возбуждения, возникнуть не могут. Последнее важно, поскольку явление возникновения колебаний и волн с частотамг , отсутствующими в исходном возбуждающем сигнале свидетельствует об изменении состояния системы в процессе колебаний, что, например, происходит при обратимом подрастании и залечивании трещин под действием волны. Указанное явление может служить основой для разработки соответствующих методов обнаружения дефектов в изделиях. Возникновение растягивающих напряжений при прохождении упругой волны в объекте контроля вызывает подрастание имеющихся в нем трещин, уменьшая упругость объекта. Сжимающие напряжения в отрицательной фазе волны приводят к частичному смыканию трещин, приводя к обратному эффекту. В результате в спектре колебаний объекта контроля возникают колебания с частотами, отсутствовавшими в возбуждающих колебаниях.  [c.32]


Смотреть страницы где упоминается термин Состояние объекта (системы) частично : [c.64]    [c.54]    [c.241]    [c.114]    [c.974]   
Надежность систем энергетики и их оборудования. Том 1 (1994) -- [ c.52 , c.53 , c.80 ]



ПОИСК



Объект частично

Состояние объекта (системы)

Состояние системы

Частичная



© 2025 Mash-xxl.info Реклама на сайте