Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Задача для течения несжимаемой жидкости обратная прямая

Разработке теоретических методов расчета течения несжимаемой жидкости и газа через решетки посвящено большое количество работ, обобщенных в ряде монографий. Однако до настоящего времени кет эффективного теоретического метода, позволяющего достаточно быстро рассчитать характеристики заданной решетки (прямая задача теории решеток) и тем более подобрать оптимальную решетку, обеспечивающую требуемый угол отклонения потока (обратная задача теории решеток).  [c.5]


Обычный подход к исследованию течения несжимаемой жидкости заключается в том, что рассчитывается поле потока невязкой жидкости — либо непосредственно (прямая задача), либо по заданному распределению скоростей (обратная задача). Затруднение здесь вызывает выбор критерия нагрузки лопатки. Можно использовать либо условие Жуковского—Кутта применительно к лопаткам с острыми кромками, либо анализ вязкостных эффектов применительно к лопаткам со скругленными выходными кромками. Результаты измерений угла поворота потока в решетке, потерь и распределений давления, выполненных при продувках решеток в аэродинамических трубах, сравниваются с теоретическими расчетами. Хотя как теория, так и эксперимент могут быть источником различного рода погрешностей, решение задачи считается правильным, если наблюдается хо-  [c.292]

Задача построения течения газа Чаплыгина через решетки, как и задача обтекания одиночных профилей, долгое время не поддавалась решению из-за нео.днолистности отображения (24.11) при наличии циркуляции скорости вокруг профиля. Эта задача впервые была решена в 1946 г. Л, И. Седовым и затем Липом [47]. А. И. Бунимович построил в 1950 г. ио методу Л. И. Седова семейство теоретических решеток, используя отображение единичного круга без двух симметрично расположенных точек на решетку теоретических профилей. В связи с выбором канонической области этот метод практически пригоден только для получения решеток малой густоты из тонких слабоизогнутых профилей. В 1950 г. автором были развиты описанные в данном разделе более эффективные методы построения теоретических решеток в потоке газа, исходя из данного обтекания любых решеток потоком несжимаемой жидкости. Можно было бы у казать еше ряд более поздних работ, посвященных различным хо-вершенствованиям в решении той же задачи. Однако аналитические методы построения теоретических решеток, как уже указывалось для той же задачи в потоке несжимаемой жидкости, в настоящее время не имеют практического значения, поскольку они непосредственно не решают ни прямой задачи теории решеток (расчет обтекания заданной решетки), ни основной обратной задачи (построение решеток с заданным распределением скорости).  [c.214]

Ряд исследований был посвящен так называемой обратной задаче о построении профиля по заданному теоретическому распределению скоростей на его поверхности. Исходные предпосылки для решения обратной задачи были сформулированы немецким ученым В. Манглером. При решении обратной задачи используется связь между плоскостью годографа скорости и физической плоскостью течения. Трудности широкого практического применения обратной задачи связаны с тем, что произвольно заданному распределению скоростей не всегда соответствует контур, имеющий реальный смысл. Необходимо, во-первых, выполнить условие замкнутости контура и, во-вторых, избежать такого распределения скоростей, при котором получается самопересекающийся контур. В работе Л. А. Симонова (1947) приводится решение обратной задачи для профиля, близкого к данному. В ней задается деформация известной эпюры скоростей. теоретического профиля и находится соответствующее изменение контура. Формулы, приведенные в этой работе, могут быть использованы не только для решения обратной, но и для решения прямой задачи. В работе В. М. Шурыгина (1948) при произвольном предварительном задании распределения давления на поверхности искомого профиля предлагается приближенный прием коррекции этого распределения с целью устранения упомянутого выше самопересечения. Подробное рассмотрение обратных краевых задач для стационарных и нестационарных течений несжимаемой и сжимаемой жидкости, а также для других задач математической физики содержится в работе Г. Г. Тумашева и М. Т. Нужина (1955). (Первые публикации Тумашева по данному вопросу относятся к 1946 г.) Наряду с общей математической постановкой ряда обратных краевых задач в этой работе обсуждаются вопросы корректности и единственности их решения, формулируются условия, которые нужно наложить на заданное распределение скоростей для получения замкнутого контура, сопоставляются способы задания распределения скоростей по дуге искомого контура и по хордовой координате.  [c.87]


С помощью указанных представлений методы расчета плоского потока (соответствующие с = 0) обобщаются на случай течения в слое переменной толщины несжимаемой жидкости, а также и газа (при дозвуковых скоростях), если использовать метод последовательных приближений типа Рейли — Янцена. Расчеты существенно усложняются из-за более сложного вида основных элементарных течений и необходимости вычислять интегралы по площади, поэтому известные работы ограничены общими обсуждениями применения метода особенностей в потоке несжимаемой жидкости (С. В. Валландер, 1958 А. М. Гохман и Е. В. Н. Pao, 1965) и решениями (вихревым методом) прямой и обратной задач в простейших случаях h X (Л. А. Симонов, 1950, 1957) ж h = х (Н. Г. Белехова, 1958 К. А. Киселев, 1958 Б. С. Раухман, 1965), а также построением элементарных течений от решетки источников в слое h = х " (Ю. А. Гладышев, 1964) и решетки диполей в слое h ехр ix (В. А. Юрисов, 1964). Для расчета течений газа в пределах межлопаточных каналов развиты и практически применяются более простые численные и приближенные методы из них самый простой основан на осреднении потока поперек канала (по у) и сведении задачи к одномерной (Г. Ю. Степанов, 1962  [c.150]


Аэродинамика решеток турбомашин (1987) -- [ c.122 ]



ПОИСК



Жидкость несжимаемая

Задача жидкости

Задача о течении

Задача обратная

Задача прямая

Прямая задача — Обратная задача

Прямая и обратная задачи

Течение в жидкости

Течения несжимаемой жидкости



© 2025 Mash-xxl.info Реклама на сайте