Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Период качаний математического физического маятника

Длина li такого математического маятника, период колебаний которого равен периоду колебаний данного физического маятника, называется приведенной длиной физического маятника. Точка К, отстоящая от оси подвеса на расстоянии OK=h, называется центром качаний физического маятника (см. рис. 324).  [c.327]

Если к оси физического маятника подвесить математический маятник , т. е. грузик т малых размеров на нити, и подобрать длину этой нити так, чтобы она была равна приведенной длине физического маятника (рис. 1976), то отклоненные на одинаковый угол оба маятника колеблются с одинаковым периодом, так что грузик все время находится в одной и той же точке физического маятника. Эта точка (лежащая на расстоянии приведенной длины от оси вращения) называется центром, качаний данного физического маятника.  [c.409]


Всегда можно подо-рать такой математический маятник, период колебаний которого будет равен периоду колебаний данного физического маятника. Через центр тяжести физического маятника проведем прямую, перпендикулярную к оси подвеса, и на этой прямой отложим от оси отрезок, равный длине / пО добранного математического маятника. Мы получим точку, которая и называется центром качания физического маятника. Расстояние от центра качания до оси подвеса, равное длине I  [c.236]

При этом точка С (центр удара) совпадает с так называемым центром качания данного физического маятника — точкой, где надо сосредоточить всю массу твердого тела, чтобы полученный математический маятник имел такой же период колебаний, как и данный физический.  [c.45]

Длину I математического маятника с таким же периодом качаний, что и данный физический, называют приведенной длиной физического маятника . Чтобы определить эту длину, приравняем период т качаний математического маятника  [c.335]

Величины S и s входят в эти соотношения симметрично. Поэтому данную длину / эквивалентного математического маятника, или, что то же, данный период колебаний Т можно получить, поместив ось подвеса на расстоянии s пли на расстоянии s от центра тяжести тела в первом случае ось качаний будет находиться на расстоянии s = I — s, а во втором — на расстоянии. S == -s от центра тяжести. Иными словами, ось качаний станет во втором случае осью подвеса, а ось подвеса—осью качаний. Это свойство физического маятника используется в оборотном маятнике, служащем для определения ускорения силы тяжести g. Построение отрезка s по известным s и п показано на рис. 301.  [c.180]

Длина L такого математического маятника, период малых колебаний которого равен периоду малых колебаний данного физического маятника, называется приведенной длиной физического маятника. Точка О1, отстоящая от точки подвеса О на расстоянии 001= Д, называется центром качаний физического маятника (рис. 379).  [c.684]

Так как период маятника зависит от g, то маятником можно пользоваться для определения величины g. При точных измерениях, конечно, уже ни один реальный маятник нельзя рассматривать как математический. Поэтому при точных измерениях силы тяжести для периода физического маятника пришлось бы пользоваться формулой (13.21). Но расчет момента инерции маятника также не может быть произведен с большой точностью. Для устранения этих трудностей используют свойство центра качаний, которое заключается в следующем. Если мы перенесем точку подвеса физического маятника в центр качаний, то прежняя точка подвеса окажется новым центром качаний. Точка подвеса и центр качаний обратимы. Поэтому период колебаний физического маятника остается прежним (так как прежней осталась приведенная длина).  [c.409]


Точка К, через которую проходит линия действия результирующей силы инерции звена, называется центром качаний, потому что, как и в случае физического маятника, если в этой точке сосредоточить всю массу звена, то получится математический маятник, период колебаний которого будет равен периоду колебаний звена, имеющего точку подвеса в центре вращения U.  [c.19]

Как известно, расстояние от оси качания маятника до его центра удара — это длина математического маятника, изохронного с данным физическим. Период колебания математического маятника определяется из формулы  [c.134]

Определим длину математического маятника, период качаний которого равен периоду качаний данного физического маятника. Для этого приравняем значения постоянных коэффициентов при 51Пф в уравнениях (24.1) н (81.2)  [c.215]

Формула (81.3) определяет приведенндю длину физического маятника, т. е. длину такого математического маятника, период качаний которого равен периоду качаний данного физического маятника.  [c.215]

Проблема центра качаний была поставлена, можно сказать, в конкурсном порядке, тем же Мерсенном, который так интересовался открытиями Галилея в акустике. Отсылая за подробностями к гл. V (см. стр. 97), укажем здесь, что Гюйгенсу принадлежит не только решение задачи о центре качания, т. е. приведенной длине физического маятника, но и точная трактовка вопроса о периоде малых колебаний математического маятника. Таким образом, была решена задача и о периоде малых колебаний физического маятника. Гюйгенс определил также центры тяжести и центры качания для многих фигур, открыл циклоидальный маятник и доказал (строгую) изохронность его колебаний. Все это шло об руку с техническими изобретениями часов с коническим маятником, часов с циклоидальным маятником, с существенным усовершенствованием обычных маятниковых часов, идея которых возникла у Гюйгенса, видимо, вполне самостоятельно. Гюйгенсу не удалось создать хронометра, удовлетворяющего требованиям моряков, но его технические изобретения во всяком случае позволили значительно уточнить измерение времени, столь существенное и для исследования колебаний. Его вклад в теорию колебаний тоже велик помимо указанного выше явления, он открыл явление, названное позже принудительным консонансом . С этими (конструк-  [c.254]

Для современников основным произведением Гюйгенса была книга Маятниковые часы (1673 г.) Это классическое произведение по богатству и ценности содержания имеет мало себе равных. Прежде всего, оно, в соответствии со своим названием, содержит (в первой части) описание великого изобретения Гюйгенса — маятниковых часов. Разрабатывая теорию математического маятника, Гюйгенс показал неизохронность колебаний кругового маятнйка и для него разработал метод расчета периода колебаний, равносильный приближенному вычислению соответствующего эллиптического интеграла. Гюйгенс строго доказал точную изохронность колебаний (любой амплитуды) циклоидального маятника, дал формулу для вычисления периода этих колебаний, а также и для периода малых колебаний кругового маятника, разработал и осуществил конструкцию циклоидального маятника. В связи с этим Гюйгенс создал новый раздел дифференциальной геометрии — учение об эволютах и эвольвентах. Он изобрел часы с коническим маятником. Попутно Гюйгенс открыл явление параметрического резонанса (наблюдая установление консонанса двух маятников, прикрепленных на одной балке) и правильно объяснил его. Кроме того, в Маятниковых часах изложены многочисленные математические результаты, как, например, спрямление многих кривых, определение площадей некоторых кривых поверхностей, метод построения касательных к рулеттам и т. д. Не располагая алгоритмом анализа бесконечно малых, Гюйгенс, проявляя исключительную изобретательность, систематически применяет инфинитезимадьные методы в геометрическом оформлении — этим аппаратом он овладел в совершенстве, и в этом среди его современников никто, кроме Ньютона, не мог с ним соперничать. Но мы еще не сказали о том, что в четвертой части Маятниковых часов , под названием О центре качания , решена поставленная Мерсенном проблема определения периода колебаний физического маятника. Это — первая глава динамики твердого тела. В этой созданной Гюйгенсом главе одинаково значительны результат и метод. В ней налицо то сочетание эксперимента и теории, технической направленности и обобщающего физического мышления, которое характерно для рассматриваемого периода. Проявить это сочетание в своем творчестве дано было только деятелям экстра-класса — Галилею, Гюйгенсу, Ньютону.  [c.110]



Смотреть страницы где упоминается термин Период качаний математического физического маятника : [c.247]   
Курс теоретической механики Изд 12 (2006) -- [ c.442 ]



ПОИСК



Качания маятника

Качанов

Маятник

Маятник математический

Маятник физический

Маятники математические физические

Ось качаний

Ось качания физического маятника

Период

Период качаний

Период качаний математического маятник

Период математического маятника

Период физического маятника



© 2025 Mash-xxl.info Реклама на сайте