Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Работа внешних сил приложенной к твердому

Выведем теперь формулу для подсчета работы внешних сил, приложенных к твердому телу. Эта элементарная работа равна i)  [c.169]

Поэтому следует вычислить лишь работу внешних сил, приложенных к телу. Положим, что к твердому телу, движуш,емуся поступательно, приложены внешние силы  [c.174]

Таким образом, элементарная работа внешних сил, приложенных к свободному твердому телу в общем случае его движения, равна сумме элементарных работ их главного вектора на перемещении точки его приложения — полюса и главного момента этих сил относительно мгновенной оси, проходящей через полюс, на перемещении при повороте вокруг этой оси.  [c.176]


Итак, элементарная работа всех сил, приложенных к твердому телу, выражается через главный вектор внешних сил и главный момент внешних сил относительно произвольной точки.  [c.169]

Мощность при вращении твердого тела вокруг неподвижной оси Oz равна произведению главного момента внешних сил относительно оси Oz на угловую скорость (для обоих сомножителей берется их алгебраическое значение, т. е. с учетом знака). Для работы системы сил, приложенных к твердому телу, при повороте его на угол ф — фо будем иметь, отправляясь от (21.21), фор-.мулу  [c.382]

Элементарная работа сил, приложенных к твердому телу. Здесь покажем, что элементарная работа системы сил, приложенных к твердому телу, определяется лишь работой внешних сил, и найдем нужное для дальнейшего выражение элементарной работы через главный вектор, главный момент внешних сил и характеристики мгновенного кинематического состояния тела.  [c.93]

Элементарная работа сил, приложенных к твердому телу, определяется лишь работой внешних сил.  [c.168]

Упругое тело может совершать перемещения, не претерпевая деформации, поэтому для него уравнение (с) остается в силе внешние силы, приложенные к упругому телу должны удовлетворять уравнениям равновесия, соответствующим твердому телу. Но кроме перемещений, свойственных абсолютно твердому телу, упругое тело может совершать бесчисленное множество других перемещений, сопровождающихся изменением формы тела. Перемещения эти (бм, б у, би ) должны удовлетворять лишь условиям, установленным для перемещений и, у, ш в упругом теле (см. 10, 11). Для таких перемещений второй член в уравнении (Ь) в нуль не обращается и начало возможных перемещений в применении к упругим телам получает такое выражение форма, которую принимает упругое тело под действием внешних, приложенных к нему сил, характеризуется тем, что на всяком возможном для упругого тела отклонении от этой формы сумма работ всех внешних и внутренних сил равна нулю.  [c.56]

Выведем сначала вспомогательную формулу для работы сил, приложенных к абсолютно твердому телу, перемещающемуся в пространстве. Твердое тело представляем себе как совокупность малых частиц (материальных точек), и пусть к частице приложена сила - геометрическая сумма внешних и внутренних сил. Элементарная работа сил на произвольном бесконечно малом перемещении тела  [c.212]


Вместо термина силы реакции можно пользоваться более ясным выражением силы геометрического происхождения . Они задаются геометрическими связями, существующими между различными частями системы, или, как в случае твердого тела, между отдельными материальными точками. Силам реакции мы противопоставляем то, что мы называли внешними силами . Вместо этого можно пользоваться более ясным термином силы физического происхождения или же сторонние силы, приложенные извне . Причина их лежит в физических воздействиях таковы, например, сила тяжести, давление пара, напряжение каната, действующее на систему извне, и т. д. Физическое происхождение этих сил проявляется в том, что в их математическом выражении содержатся особые, поддающиеся лишь опытному определению константы (постоянная тяготения, отсчитываемые по манометру или барометру деления шкалы и т. п.). Трение, о котором мы будем говорить в 14, нужно отнести частично к силам реакции, частично к сторонним силам к первым — если оно является трением покоя к последним — если оно является трением движения (в частности, трением скольжения). Трение покоя автоматически исключается принципом виртуальной работы, трение же скольжения нужно причислить к сторонним силам. Внешне это проявляется в том, что в закон трения скольжения [уравнение (14.4)] входит определяемый экспериментально коэффициент трения /.  [c.75]

Ниже мы рассмотрим вариационную постановку задачи о динамическом росте трещины в линейно-упругих, а также нелинейных (упругих или неупругих) телах. Вначале исследуем динамику развития трещины в линейно-упругом материале. Рассмотрим два момента времени t и + в соответствии с которыми переменные, описывающие поля, обозначаются индексами 1 и 2. Пусть в момент времени ti объем тела будет l/ , внешняя граница тела с заданными нагрузками Т будет 5<л, поверхность трещины равна 5 . Предположим, что между моментами ti и ta площадь трещины изменяется на AS = S 2 — 5 . Для простоты считаем, что поверхность трещины свободна от приложенных нагрузок. Более общий случай, учитывающий объемные силы и нагрузку, приложенную к поверхности трещины, рассмотрен в [9, 10]. Принцип виртуальной работы, определяющий движение твердого тела между моментами ti и г г, когда происходит рост трещины, определяется следующим образом 19,10  [c.274]

Как известно (см. обзор теории), элементарная работа внешних сил, приложенных к твердому телу, вращающемуся вокруг неподвижной o hz, вычисляется по формуле  [c.374]

Выражение (65.3) показывает, что элементарная работа сил, приложенных к твердому телу, движущемуся поступат льно, равна элементарной работе главного вектора внешних сил, приложенного в любой точке тела.  [c.174]

В этом уравнении К — главный вектор и Мо — главный момент внешних сил, приложенных к абсолютно твердому телу. Напомним, что элементарная работа внузреиних сил, приложенных к точкам неизменяемой системы, равна нулю ( 34).  [c.115]

Когда твердое тело имеет неподвижную точку, то силы связи представляют собою реакции тех внешних тел, которые обеспечивают неподвижность этой точки. Условие отсутствия трения заключается в том, что реакции эти приводятся к одной результирующей, проходящей через неподвижную точку, без пары. Влияние трения равносильно действию пары, стесняющсй свободное вращение вокруг неподвижной точки. В том случае, когда пары нет, сумма виртуальных работ реакций приводится, как мы видим (п° 237), к работе их результирующей, приложенной к неподвижной точке эта работа равна нулю, так как точка приложения силы неподвижна. Таким образом, в согласии с леммой (п 232) работа сил связи равна нулю для всех перемещений, совместимых со связями, и потому принцип виртуальных перемещений применим к данному случаю.  [c.293]


Применяя доказанную теорему о том, что как при адиабатическом, так и при изоциклическом изменении состояния внешние силы имеют силовую функцию, мы в теории теплоты получаем следующее предложение Если нагретое твердое тело любыми приложенными к нему внешними силами деформируется адиабатически или изотермически, а в остальном произвольным образом, то работа деформации всегда является полным дифференциалом, как если бы внешние силы уравновешивались силами, исходящими от покоящихся материальных частиц. И это имеет место несмотря на то, что частицы тела находятся в оживленнейшем тепловом движении.  [c.489]

Две указанные выше классификации сил, действующих на материальную систему, играют ва>1<ную роль в динамике, поскольку с каждой из них связывается целая группа общих теорем и последующих конкретных приложений. Не будет поэтому лишним вспомнить, что аналогичные обстоятельства имели место в статике, где сначала, разделив силы на внешние и внутренние, мы пришли к основным условиям равновесия (т. I, гл. XII), приложимым в качествь необходимых к всевозможным типам материальных систем (например, к стержневым системам, нитям и т. д., гл. XIV) и, в частности, являющимся достаточными для равновесия твердого тела (гл. Х1П) затем в общей статике (гл. XV), отправляясь от разделения сил на активные силы и реакции и присоединяя ограничительные предпо--ложения о природе связей (отсутствие трения), мы пришли, примени принцип виртуальной работы, к исключению неизвестных реакций н условий равновесия.  [c.256]


Смотреть страницы где упоминается термин Работа внешних сил приложенной к твердому : [c.420]    [c.175]    [c.71]    [c.408]    [c.247]    [c.7]    [c.407]    [c.291]    [c.171]   
Курс теоретической механики (2006) -- [ c.0 ]



ПОИСК



Работа внешних сил



© 2025 Mash-xxl.info Реклама на сайте