Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Теплообменный аппарат регенеративный

После создания тепловых двигателей теория теплоты стала развиваться вначале как наука о превращении теплоты в механическую энергию, т. е. в форме термодинамики. Но термодинамика выясняла только теоретические возможности рабочего процесса двигателя, тогда как совершенство реального двигателя зависит от ряда физико-химических процессов, среди которых одним из главных является теплообмен. Таким образом, теория теплообмена стала совершенно необходимой для правильного понимания и совершенствования рабочего процесса тепловых двигателей. Стремление к наиболее эффективному использованию теплоты и желание увеличить надежность работы двигателя привели к появлению в силовых установках ряда дополнительных теплообменных аппаратов (регенеративные подогреватели, экономайзеры, воздушные радиаторы и т. п.).  [c.242]


Чистоту конденсата, возвраш,ающегося из теплообменных аппаратов регенеративной схемы, в которых могут накапливаться агрессивные газы, необходимо обеспечить постоянной и надежной работой устройств, осуществляющих вентиляцию паровых объемов этих аппаратов.  [c.135]

В состав ГТУ обычно входят камера сгорания, газовая турбина, воздушный компрессор, теплообменные аппараты различного назначения (воздухоохладители, маслоохладители системы смазки, регенеративные теплообменники) и вспомогательные устройства (маслонасосы, элементы водоснабжения и др.).  [c.174]

Рис. 2.5. Виды теплообменных аппаратов а — рекуперативные 6 — регенеративные в — смесительные I — горячий теплоноситель 2 — холодный теплоноситель О — тепловой поток Рис. 2.5. <a href="/info/481352">Виды теплообменных</a> аппаратов а — рекуперативные 6 — регенеративные в — смесительные I — горячий теплоноситель 2 — холодный теплоноситель О — тепловой поток
Поверхностные теплообменные аппараты, в свою очередь, подразделяются на рекуперативные и регенеративные. В рекуперативных теплообменных аппаратах теплота от одного теплоносителя к другому передается через разделяющую их стенку ( ПОверхность теплопередачи), при этом горячая и холодная  [c.330]

Аппараты первой группы относятся к поверхностным теплообменникам и называются рекуперативными теплообменными аппаратами. К ним относятся также регенеративные теплообменники, в которых стенка аппарата поочередно соприкасается с теплоносителем и продуктом.  [c.11]

По принципу действия теплообменные аппараты разделяются на поверхностные (рекуперативные и регенеративные), в которых тепловой перенос осуществляется с использованием разделяющих поверхностей и твердых тел, и смесительные, процессы нагревания и охлаждения в. которых происходят при непосредственном контакте теплоносителей.  [c.421]

Регенеративными (регенераторами) называются теплообменные аппараты, в которых теплоносители попеременно соприкасаются с поверхностью так называемой насадки, аккумулирующей теплоту от горячего теплоносителя и отдающей ее холодному теплоносителю. Таким образом, для регенераторов характерен нестационарный теплообмен.  [c.421]

Поверхностные теплообменные аппараты разделяются на регенеративные и рекуперативные. В первых теплота горячих газов аккумулируется насадкой (металлические шары или листы, керамическая сыпучая масса, кирпичи и др.), а затем передается нагреваемому газу путем его продувания через горячую насадку. Примером может служить вращающийся регенеративный воздухоподогреватель, показанный на рис. 20.2. Он состоит из вращающегося ротора /, собранного из пакетов тонких гофрированных листов 2 (насадка). Эти листы образуют продольные каналы для прохода газов. Ротор разделен на 12 секторов радиальными перегородками, с помощью которых поток холодного воздуха отделяется от потока горячих газов. Подвод и отвод газов и воздуха осуществляются через патрубки, расположенные с торцевых сторон корпуса 3 теплообменника. Ротор вращается с частотой 2...10 об/мин, благодаря чему теплоаккумулирующая насадка проходит поочередно через зону нагретых газов, где она воспринимает теплоту, и через зону холодного воздуха, где теплота передается от насадки к воздуху.  [c.242]


Теплообменным аппаратом называется любое устройство, в котором осуществляется перенос тепла от одного теплоносителя (жидкости или газа) к другому (жидкости или газу). Теплообменные аппараты по принципу действия можно разделить на три группы непрерывного действия, или рекуперативные периодического действия, или регенеративные смесительные.  [c.93]

Теплообмен между теплоносителями является одним из наиболее важных и часто используемых в технике процессов. Например, получение пара заданных параметров в современном парогенераторе основано на процессе передачи теплоты от одного теплоносителя к другому. В конденсаторах и градирнях тепловых электростанций, воздухоподогревателях доменных печей и многочисленных теплообменных устройствах химической промышленности основным рабочим процессом является процесс теплообмена между теплоносителями. По принципу действия теплообменные аппараты могут быть разделены на рекуперативные, регенеративные и смесительные. Выделяются еще теплообменные устройства, в которых нагрев или охлаждение теплоносителя осуществляется за счет внутренних источников тепла.  [c.441]

Регенераторы — такие теплообменные аппараты, в которых одна и та же поверхность нагрева через определенные промежутки времени омывается то горячей, то холодной жидкостью. Сначала поверхность регенератора отбирает теплоту от горячей жидкости и нагревается, затем поверхность регенератора отдает энергию холодной жидкости. Таким образом, в регенераторах теплообмен всегда происходит в нестационарных условиях, тогда как рекуперативные теплообменные аппараты большей частью работают в стационарном режиме. Типичным примером регенеративных аппаратов являются воздухоподогреватели мартеновских и доменных печей.  [c.441]

ТЕПЛОВОЙ РАСЧЕТ РЕГЕНЕРАТИВНЫХ ТЕПЛООБМЕННЫХ АППАРАТОВ  [c.455]

Регенеративные аппараты. Регенеративными называются такие теплообменные аппараты, в которых процесс теплопередачи [ от горячего теплоносителя к холодному во времени разделяется на два периода. В течение первого периода через аппарат протекает горячий теплоноситель, тепло которого передается стенкам и в них аккумулируется. При этом теплоноситель охлаждается, а стенки аппарата нагреваются — это так называемый период нагревания. В течение второго периода через аппарат протекает холодный теплоноситель, который отнимает аккумулированное в стенках  [c.243]

Поверхностные теплообменные аппараты, в которых каждый теплоноситель омывает поверхность нагрева, не вступающую в соприкосновение с другими теплоносителями, называются рекуперативными теплообменниками, или рекуператорами. Конструктивно они обычно оформляются в виде ряда каналов, по которым протекают рабочие жидкости. При стационарной тепловой работе рекуперативного теплообменника устанавливается постоянный тепловой поток через стенки от одной поверхности нагрева к другой без аккумуляции тепла в стенках. Поверхностные теплообменники, в которых одна и та же поверхность нагрева попеременно омывается разными теплоносителями, отдающими и воспринимающими тепло, называются регенеративными теплообменниками, или регенераторами. Они обычно состоят из системы каналов, в которые помещена твёрдая аккумулирующая набивка (металлическая набивка, керамические кольца и т. п.) и по которым поочерёдно протекают рабочие жидкости. Тепло, отданное одним из теплоносителей набивке и стенкам канала, аккумулируется ими, а затем передаётся другому теплоносителю, воспринимающему тепло. Таким образом самый принцип работы регенеративного аппарата предполагает периодическую аккумуляцию тепла с последующей его отдачей.  [c.123]

Периодичность работы поверхности нагрева является характерной особенностью регенеративного теплообменного аппарата. В период нагревания насадки горячая жидкость охлаждается. отдавая тепло насадке, в период охлаждения насадка отдаёт тепло протекающей в этот период через аппарат холодной жидкости. Температуры жидкостей, омывающих поверхности нагрева, и самой поверхности нагрева изменяются не только по длине потока жидкостей, но и во времени.  [c.130]

Регенеративные подогреватели и другие теплообменные аппараты устанавливаются обычно на специальных металлических опорных конструкциях.  [c.322]

По принципу действия теплообменные аппараты (теплообменники) могут быть разделены на рекуперативные, регенеративные и смесительные. Особое место занимают теплообменники с внутренними источниками энергии электронагреватели, реакторы и др. [5].  [c.100]


В низкотемпературных установках используются как рекуперативные, так и регенеративные теплообменные аппараты. К первым относятся кожухотрубные (главным образом применяются в холодильной технике), витые поперечно-точные, типа труба в трубе , со спаянными трубками, пластинчато-ребристые и матричные теплообменники.  [c.268]

РЕГЕНЕРАТИВНЫЕ ТЕПЛООБМЕННЫЕ АППАРАТЫ  [c.285]

В регенеративном же воздухоподогревателе процесс теплопередачи осуществляется в два периода. В этом теплообменном аппарате одна и та же поверхность (специальная насадка) омывается то горячими газами, то холодным воздухом. В первый период теплота от горячих газов воспринимается поверхностью нагрева — насадкой, а затем во втором периоде при протекании холодного воздуха эта аккумулированная теплота передается холодному возду-  [c.9]

Регенеративным теплообменным аппаратом называют устройство, в котором передача теплоты от одного теплоносителя к другому происходит с помощью теплоаккумулирующей массы, называемой насадкой.  [c.393]

Область применения и температурный уровень теплоносителей предопределяют конструкцию регенеративного теплообменного аппарата и тип его насадки. В связи с этим выделяют аппараты, работающие в областях высоких (800... 1000 °С), средних (250...400 °С) и очень низких температур (-270...- 100 °С).  [c.393]

Классификация регенеративных теплообменных аппаратов. Эти теплообменники классифицируют по виду и форме теплоаккумулирующей насадки, которая может быть подвижной и неподвижной. В последнем случае для получения непрерывного процесса теплообмена от одного теплоносителя к другому необходимы два аппарата регенератора (рис. 4.2.1, а). Сначала в одном происходит охлаждение горячего теплоносителя, а в другом нагрев холодного теплоносителя, а после переключения аппаратов процесс теплопередачи протекает в обратном направлении. Переключение производится поворотом клапана (шибера) 4. Обычно переключение регенераторов производится автоматически через определенные промежутки времени.  [c.393]

Регенеративные теплообменные аппараты в криогенной технике используются в основном в воздухоразделительных установках и в холодильных газовых машинах. В регенеративных аппаратах воздухоразделительных ус-  [c.395]

В воздухоразделительных установках применяют также насыпную каменную насадку из базальта или кварцита с гранулами размером 4... 14 мм, основные свойства которых приведены в [6]. Регенеративный теплообменный аппарат с насыпной каменной насадкой имеет корпус I (рис. 4.2.5), внутрь которого вмонтирован змеевик 2 для получения части продуктов разделения, не загрязненных приме-  [c.397]

В регенеративных теплообменных аппаратах с насыпной насадкой площадь сечения для прохода газа приблизительно в 1,5 раза меньше, чем в аппаратах с металлической насадкой из гофрированной ленты, поэтому для получения приемлемого гидравлического сопротивления скорость газа, определенная в полном сечении аппарата, принимается 1...1,2 м/с. Перепад температур за период работы аппарата по прямой и обратной схемам составляет 35...45 К.  [c.398]

Понятия теплопередачи как явления переноса теплоты от одного теплоносителя к другому через разделяющую их стенку и коэффициента теплопередачи как меры интенсивности этого процесса применительно к регенеративному теплообменному аппарату не имеют физического смысла, но их используют в моделях аппаратов с сосредоточенными параметрами.  [c.400]

Методы расчета коэффициента к основаны на использовании теории рекуперативных теплообменных аппаратов для расчета регенераторов. Средний коэффициент теплопередачи регенеративного теплообменного аппарата  [c.400]

В транспортных газотурбинных установках мощностью до 1 МВт может быть использован вращающийся регенеративный теплообменный аппарат с дисковым ротором карманного типа (рис. 4.2.9). Несущая и теплопередающая функции ротора разделены. Каркас диска образован массивными боковыми полотнами 2, связанными поперечными каркасными рамками. В полотнах прорезаны отверстия, в которые вставлены стаканы 3, образующие сквозные цилиндрические окна - карманы. В каждый карман помещен рабочий элемент 8 насадки, представляющий собой усеченный конус из многослойной плетеной сетки из коррозионно-стойкой стали. Поскольку рабочие элементы имеют очень небольшую площадь контакта с металлическими конструкциями ротора, они мало подвержены действию резко изменяющихся температур. Температура опорных поверхностей уплотнений 5 в рабочем режиме превышает 400 °С, что позволяет изготовлять их из графита.  [c.401]

Схема регенеративного теплообменного аппарата с подвижным слоем твердого теплоносителя, применяемого иногда для глубокого охлаждения дымовых газов в котлах, представлена на (рис. 4.2.10). Регенератор имеет камеры нагрева I и охлаждения 2 с установленными в них жалюзийными решетками 3, образующими вертикальный расширяющийся по ходу потока канал 4, подключенный к бункеру 5 подачи промежуточного сыпучего теплоносителя. Греющий газ, отдавая теплоту промежуточному теплоносителю, поступающему из бункера 5, охлаждается до температуры выше точки росы, т.е. до коррозионно-безопасного уровня. Нагретый теплоноситель ссыпается в камеру охлаждения, отдает теплоту воздуху и через  [c.402]

Тепловой расчет непрерывно действующих регенеративных теплообменников. Рассмотрим расчет регенеративного теплообменного аппарата с вращающейся насадкой. Процесс переноса теплоты в таком регенераторе осуществляется за один цикл (оборот) длительностью "Спер = бО/и (где п - частота вращения, мин ), в течение которого насадка за время Ti получает теплоту от горячего теплоносителя и за время Т2 отдает его холодному теплоносителю.  [c.402]

Другие методики упрощенного расчета регенеративных теплообменных аппаратов с подвижной и неподвижной насадками приведены в [20, 28, 35, 49]. Уравнения подобия для определения средних за период и по поверхности нагрева коэффициентов теплоотдачи а при течении газов в насадках различного типа, а также более точные методики поверочного и проектного расчетов непрерывно действующих регенераторов приведены в [6].  [c.403]


РЕГЕНЕРАТИВНЫЕ ТЕПЛООБМЕННЫЕ АППАРАТЫ КРИОГЕННЫХ УСТАНОВОК  [c.371]

При создании достаточно сложных аппаратов кондиционеров, холодильно-нагревательных установок, термостатов и других, необходимо помнить об основных достоинствах вихревых энергоразделителей — простоте и надежности. Поэтому, используе. ас в схемах вспомогательные устройства и утилизационные узлы должны быть также достаточно просты и обладать высокой надежностью. Как правило, это струйные эжекторы и рекуперативные теплообменные аппараты. Последние в силу специфики работы регенеративных схем обычно оказываются одними из наиболее сложных устройств, от работы которых в достаточно большой степени зависит работа всего агрегата в целом. В этой связи к подбору типа, расчету и проектированию теплообменника необходимо подходить с особой тщательностью. В работе [116] изложены основные требования, предъявляемые к теплообменникам.  [c.233]

Регенеративные TOA - аппараты, в которых поверхносл. нагрева переодически омывается то горячим, то холодным теплоносителем.При этом теплота, отнимаемая от греющего теплоносителя, переодически передается нагреваемой среде. В качестве поверхности нагрева в таких теплообменных аппаратах используется твердый, достаточно массивный материал (кирпичи, различные засыпки, листы  [c.31]

По способу передачи теплоты различают контактные и п о-вер Xнос тные теплообменные аппараты. В контактных— теплота передается в результате непосредственного контакта (смешения) двух теплоносителей. Поверхностные теплообменные аппараты разделяют на рекупера гпивные и регенеративные. В первых теплота передается от одного теплоносителя к другому через разделяющую их твердую стенку во вторых — следующим образом стенка, находящаяся попеременно в контакте то с горячим, то с холодным теплоносителем, передает теплоту от первого ко второму.  [c.302]

По принципу действия теплообменные аппараты делятся на поверхностные и смесительные. К поверхностным теплообменным аппаратам относятся рекуперативные, если теплоносители движутся одновременно относительно разделяющей их стенки, и регенеративные, если одна и та же поверхность нагрева омывается периодически то горючим, то холодным теп.71оносителем. В смесительных теплообменных аппаратах теплообмен происходит при смешении теплоносителей без разделяющей их твердой поверхности.  [c.219]

Важное значение для низкотемпературных машин и установок имеют и другие процессы, и в первую очередь сопровождающиеся в адиабатных условиях эффектом понижения температуры. Некоторые из них являются одновременно и холодопроизводящими процессами, например, расширение газов и паров с совершением внешней работы — детан-дирование. Процесс дросселирования хотя и не является холодопроизводящим, но обеспечивает необходимое изменение температуры рабочего тела в циклах. Процессы испарения (плавления, сублимации), адсорбции, растворения обеспечивают возможность передачи теплоты в цикл от охлаждаемого тела при определенной его температуре. В низкотемпературных установках широко используются также процессы рекуперации холода (теплоты) в рекуперативных и регенеративных теплообменных аппаратах, где происходит теплообмен между потоками рабочего тела и, таким образом, обеспечивается достижение заданной низкой температуры. Важное значение эффективность процессов рекуперации холода имеет для криогенных циклов и установок, работающих на уровне температур ниже 40 К и особенно ниже 5 К.  [c.312]

Теплообменным аппаратом называется всякое устройство, в кв-тором осуществляется процесс передачи тепла от одного теплоне-сителя к другому. Такие аппараты многочисленны и по своему технологическому назначению и конструктивному оформлению весьма разнообразны. По принципу действия теплообменные аппараты могут быть разделены на рекуперативные, регенеративные и смесительные.  [c.228]

Подавляющее большинство теплообменников в теплосиловом хозяйстве представляет собой рекуперативные теплообменные аппараты поверхностного типа — пароперегреватели, испарители, бойлеры и различного рода подогреватели, большая часть конденсаторов, водяные и воздушные экономайзеры, деаэраторы и охладители. Регенеративные поверхностные теплообменники применяются лишь для подогрева воздуха (воздухоподогреватели Юнгстрема).  [c.123]

В качестве воздухоподогревателей широко используют рекуперативные трубчатые теплообменные аппараты. В последнее время котлы большой паропроизводительности комплектуют регенеративными воздухоподогревателями системы Юнгстрема.  [c.5]

Для повышения эффективности теплотехнологических систем, работающих в широком интервале перепадов температуры между теплоносителями, часто оказывается целесообразным применение регенеративных теплообменных аппаратов, например, в высокотемпературных технологических установках для подогрева газообразных компонентов горения, газотурбинных установках, воздухоразделительных установках, низкотемпературных установках разделения газов, холодильногазовых машинах и др.  [c.393]

Основные конструкции непрерывно действующих регенеративных теплообменников. В области средних температур (250,,, 400 °С) для подогрева воздуха используется вращающийся регенеративный теплообменный аппарат, ротор которого имеет металлическую насадку в виде плоских листов или пакета пластин с двусторонними вьтуклостями в виде полусфер, расположенных в щахматном порядке по отношению к смежным пластинам (см, рис, 4,2,2, з).  [c.400]

Тетообменные аппараты — устройства, в которых теплота передается от одного теплоносителя к другому. По принципу действия теплообменные аппараты (теплообменники) разделяются на рекуперативные, регенеративные и смесительные. В рекуперативных теплообменниках (подогревателях, испарителях, конденсаторах и др.) теплота от горячей среды к холодной передается через разделяющую их стенку. В регенеративных теплообменниках (воздухоподогревателях доменных и мартеновских печей, котельных установок, газотурбинных установок, утилизаторах теплоты вентиляционных выбросов и др.) одна и та же поверхность некоторого тела (насадки) омывается то горячим, то холодным теплоносителем. В первый период насадка нагревается греющей средой, а во второй — охлаждается, отдавая ранее аккумулированную теплоту нагреваемой среде. Смесительные теплообменники предназначены для осуществления тепло-и массообменных процессов при непосредственном контакте теплоносителей. К ним относятся полые, насадочные и барботажные скрубберы скрубберы Вентури, пенные аппараты, широко применяемые для охлаждения газов и в системах газоочистки [69] оросительные камеры систем кондиционирования воздуха (см. [6]) выпарные аппараты с погружными горелками (см. п. 4.2.9) струйные во-до-водяные (элеваторы, см. п. [68]) и пароводяные подогреватели типа фисоник или транссоник , применяемые в системах теплоснабжения, отопления, вентиляции и горячего водоснабжения [82].  [c.167]


Смотреть страницы где упоминается термин Теплообменный аппарат регенеративный : [c.331]    [c.133]    [c.63]   
Теплоэнергетика и теплотехника Кн4 (2004) -- [ c.16 , c.614 ]



ПОИСК



Аппараты теплообменные

Регенеративные теплообменные аппараты криогенных установок

Регенеративный теплообменный аппарат определение)

Тепловой расчет регенеративных теплообменных аппаратов

Теплообмениые аппараты

Теплообменные регенеративные и смесительные аппараты



© 2025 Mash-xxl.info Реклама на сайте