Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Механические системы с несколькими Частоты собственные

Условия ЗАДАЧ. Механическая система с двумя степенями свободы состоит из двух однородных цилиндров и нескольких линейно упругих пружин с одинаковой жесткостью с. Цилиндры катаются без проскальзывания и сопротивления по горизонтальной поверхности, пружины в положении равновесия не имеют предварительного напряжения. Массой пружин пренебречь. Определить частоты собственных колебаний системы.  [c.342]


Максимальная амплитуда колебаний будет не в момент совпадения частоты возмущающей силы с собственной частотой р механической системы, а несколько позже, т. е. максимум амплитуды смещается в область больших частот при постепенном уменьшении частоты это смещение происходит в области меньших частот. На рис. 16 даны графики, определяющие отношение частоты ш, при которой достигается максимум амплитуды колебаний, к собственной частоте системы р. По оси абсцисс отложены значения безразмер-  [c.253]

Уровни пульсации в несколько кПа невелики по сравнению с рабочим давлением в трубопроводе, однако такая пульсация может вызывать существенную вибрацию трубопроводов при совпадении частоты пульсации с одной из частот собственных колебаний трубопровода как механической системы.  [c.59]

На рис. 4, а показана силовая схема высокочастотной машины с электромагнитным возбуждением колебаний для испытаний на усталость. Станина укреплена на основании с большой инёрциониой массой, установленном на пружинах. Статическая нагрузка на испытуемый образец пропорциональна статической деформации скобы. Переменная гармоническая сила возбуждается благодаря движению грузов инерционной массы возбудителя колебаний. Машина работает в режиме автоколебаний. Так как добротность механической колебательной системы достигает нескольких десятков единиц, частота автоколебаний близка к частоте собственных резонансных колебаний. Колонны 2 и скоба 5 испытывают статические нагрузки растяжения и сжатия в зависимости от величины предварительного статического нагружения и растяжения или сжатия испытуемого образца. Скоба 5 нагружена и переменной силой, но так как ее жесткость во много раз меньше жесткости йены-  [c.33]

Датчики абсолютной скорости инерционного действия по механической схеме близки к акселерометрам и отличаются тем, что МП должен преобразовать силу инерции в кинематическую величину — скорость, перемещение или деформацию (так как упругая сила не может быть мерой скорости, см. гл. VII). В одном из возможных режимов работы выходной сигнал МП (перемещение или деформация) пропорционален виброскорости объекта, что возможно в некотором диапазоне частот по обе стороны от собственной частоты механической системы. Ширина диапазона практически пропорциональна относительному демпфированию в датчике. Такой квазирезонанс-ный режим пока можно получить только в низкочастотной области и в ограниченном интервале температур [42]. Квазирезонанснып режим возможно создать не на механической, а на электрической стороне датчика с помощью схем коррекции сигнала. Оба варианта датчика близки по параметрам Собственная частота (которая в данном случае характеризуется не максимумом АЧХ, а переходом ФЧХ через значение 90 ) 20—30 Гц. Меньшая собственная частота дает выигрыш в чувствительности, ио приводит к зависимости характеристик датчика от положения в поле земного тяготения из-за статического прогиба. Подвижную систему подвешивают на плоских пружинах, обеспечивающих ее одномерное перемещение. Верхняя граница рабочего диапазона достигает нескольких сот герц. Она ограничивается не только возможностями демпфирования, но и наличием высших собственных частот механической системы, ярко выраженных для этого типа подвеса.  [c.224]


Все это выглядит несколько таинственно. Дело же заключается в том, что динамическая индивидуальность системы в значительной степени определяет ее поведение при возбуждении колебаний. Механические системы ведут себя так, как если бы они стремились непрерывно совершать свободные колебания по собственным формам с соответствующими собственными частотами. В нормальных условршх это невозможно из-за наличия трения, однако при действии некоторого возбуждения колебания будут поддерживаться. Как мы увидим, здесь имеются две возможности система может либо получать возбуждение извне, либо сама обеспечивать необходимое возбуя -дение за счет стремления совершать свободные колебания с собственной частотой.  [c.53]

Поглощенная световая энергия в самом общем и наиболее распространенном случае переходит в тепло, несколько повышая температуру поглощающего тела. Но нередко лишь часть световой энергии переходит в тепло, другая же испытывает иные превращения, вызывая те или иные действия свел а. В настоящем разделе мы не будем рассматривать тех случаев, когда в результате воздействия света тело само становится источником и испускает излучение собственной или вынужденной частоты. Часть таких процессов (излучение вынужденных частот) была рассмотрена в гл. XXIX (рассеяние света). Другая их часть (излучение собственных частот) будет обсуждаться в гл. XXXVIII. Настоящий же раздел посвящен вопросам превращения световой энергии в механическую энергию электронов (фотоэффект и явление Комптона) или всей поглощающей системы (давление света), а также различным химическим действиям света (фотохимия, фотография, физиологическая оптика).  [c.633]

Общая для всего мира тенденция улучшения рабочих параметров ГТД за счет увеличения степеней сжатия как следствие приводит к появлению большого числа коротких лопаток с собственными частотами колебаний даже по первой форме в области высоких звуковых частот циклов. Увеличение частоты / при данном ресурсе эксплуатации Тэ автоматически приводит к росту циклической наработки N. Поскольку ресурс Тэ также имеет тенденцию к росту, увеличивается относительное число усталостных повреждений среди возможных нарушений работоспособности деталей ГТД. Стала актуальной проблема оптимизации технологии коротких лопаток и связанных с ними элементов дисков по характеристикам сопротивления усталости на высоких звуковых частотах и эксплуатационных температурах, которые, как и частота нагружения, становятся все более высокими. Из-за жестких требований к весу деталей и сложности их конструкции в каждой из них имеет место около десятка примерно равноопасных зон, включающих различные по форме поверхности и концентраторы напряжений гладкие участки клиновидной формы, елочные пазы, тонкие скругленные кромки, га.лтели переходные поверхности), ребра охлаждения, малые отверстия, резьба и др. Даже при одинаковых методах изготовления, например при отливке лопаток, поля механических свойств, остаточных напряжений, структуры и других параметров физико-химического состояния поверхностного слоя в них получаются различными. К этому следует добавить, что из-за различий в форме обрабатывать их приходится разными методами. Комплексная оптимизация технологии изготовления таких деталей по характеристикам сопротивления усталости сразу всех равноопасных зон без использования ЭВМ невозможна. Поэтому была разработана система методик, рабочих алгоритмов и программ [1], которые за счет применения ЭВМ позволяют на несколько порядков сократить число технологических испытаний на усталость, необходимых для отыскания области оптимума методов изготовления деталей, а главное строить математические модели зависимости показателей прочности и долговечности типовых опасных зон деталей от обобщенных технологических факторов для определенных классов операций с общим механизмом процессов в поверхностном слое. Накапливая в магнитной памяти ЭВМ эти модели, можно применять их для прогнозирования наивыгоднейших режимов обработки новых деталей, которые в авиадвигателестроении часто меняются без трудоемких испытаний на усталость. Построение  [c.392]


Переходное излучение возникает при равномерном и прямолинейном движении источника возмущений, не обладающего собственной частотой, в неоднородной среде или вблизи такой среды [6.16]. Впервые этот эффект был описан В.Л. Гинзбургом и И.М. Франком [6.17], ко-торые проанализировали излучение электромагнитных волн, возни кающее при пересечении заряженной частицей границы раздела вакуум-идеальный проводник. Уже из первых работ, посвященных переходному излучению, стало очевидно, что данный эффект является общефизическим , т.е. имеет место для волн различной физической природы. Вследствие этого, наряду с интенсивными исследо ваниями переходного излучения электромагнитных волн, начиная с 1962 г., начали появляться работы по переходному излучению звука 6.20]. К настоящему времени переходному излучению волн посвящено огромное количество статей, несколько обзоров [6.15, 6.28], в 1984 г. вышла монография [6.16], достаточно полно осветившая переходное излучение в классической электродинамике. Настоящая глава посвящена переходному излучению упругих волн, возбуждаемых движущимися по неоднородным упругим системам механическими объектами. Наглядным примером такой системы является железнодо рожный путь. Колеса поезда, прижатые силой тяжести к рельсам, возбуждают в пути упругие волны. Упругие волны возбуждает и движущийся пантограф (токосъемник) поезда, взаимодействующий с проводами системы токосъема. Здесь излучение обусловлено наличием в подвеске зажимов, фиксаторов, воздушных стрелок и т.п.  [c.231]

Электродинамический преобразователь создает частотнонезависимую силу при неизменной амплитуде питающего тока. Это означает, что механическое сопротивление подвижной системы должно быть чисто упругим. Задемпфировав подвижную систему достаточно сильно, можно, как это обычно делается, выбрать собственную частоту несколько ниже верхней частоты (сов) рабочего диапазона. При допуске неравномерности характеристики ЗдБ резонансная частота (соо) может быть вдвое ниже верхней частоты диапазона ( uo=0,5 uh), а коэффициент затухания при этом должен составлять  [c.213]

Испытание на усталость при знакопеременном изгибе производится в условиях неоднородного напряженного состояния более чистыми условиями эксперимента являются такие, когда цилиндрический образец подвергается попеременному растяжению и сжатию. Машины для такого рода испытаний существуют пульсирующая осевая сила создается в них либо механическим путем, либо при помощи электромагнита, возбуждающего продольные колебания. В машинах резонансного типа частота возмущающей силы принимается близкой к собственной частоте колебаний системы, состоящей из образца и присоединенных к нему масс, система автоматическога регулирования поддерживает постоянство амплитуды. Основная техническая трудность состоит при этом в центровке образцов незначительный эксцентриситет приложения нагрузки создает напряжения изгиба, не поддающиеся практически учету. Эти напряжения искажают результаты испытаний. Результаты, полученные на наиболее совершенных современных машинах, показывают, что предел выносливости, определенный при растяжении — сжатии, несколько ниже, чем предел выносливости при изгибе. Это можно объяснить масштабным эффектом при изгибе максимальные напряжения возникают в зоне образца, примыкающей к поверхности, при растяжении сжатии во всем объеме напряжения одинаковы.  [c.415]


Смотреть страницы где упоминается термин Механические системы с несколькими Частоты собственные : [c.259]    [c.134]    [c.248]    [c.253]    [c.45]   
Прочность Колебания Устойчивость Т.3 (1968) -- [ c.277 , c.278 , c.280 ]



ПОИСК



Механические системы Частота

Механические системы Частоты собственные

Механические системы механических систем

Система Собственные частоты

Система механическая

Частота собственная



© 2025 Mash-xxl.info Реклама на сайте