Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Диэлектрическая проницаемость ионного

Для расчета диэлектрической проницаемости ионных бинарных кристаллов применяется формула- Борна  [c.7]

Твердые диэлектрики, представляющие собой ионные кристаллы с плотной упаковкой частиц, обладают электронной и ионной поляризациями и имеют величину диэлектрической проницаемости, лежащую в широких пределах. Температурный коэффициент диэлектрической проницаемости ионных кристаллов в большинстве случаев имеет положительное значение вследствие того, что при повышении температуры наблюдается не только уменьшение плотности вещества, но и возрастание поляризуемости ионов, причем влияние этого фактора  [c.49]


Величина поляризуемости с повышением температуры возрастает в результате ослабления упругих сил, действующих между ионами, обусловленного увеличением расстояния между ионами при тепловом расширении. Суммарный эффект ионной поляризации при увеличении температуры возрастает, и в большинстве случаев температурный коэффициент диэлектрической проницаемости ионных диэлектриков оказывается положительным.  [c.26]

Ионная поляризация (Си Qк на схеме рис. 1-2) характерна для твердых тел с ионным строением и обусловливается смещением упруго связанных ионов. С повышением температуры она усиливается в результате ослабления упругих сил, действующих между ионами, из-за увеличения расстояния между ними при тепловом расширении, и в большинстве случаев температурный коэффициент диэлектрической проницаемости ионных диэлектриков оказывается положительным.  [c.22]

Диэлектрическая проницаемость ионного кристалла 155  [c.414]

Поскольку, по определению, D = еЕ, из (12.10) мы находим диэлектрическую проницаемость ионов  [c.70]

Найдем, в качестве примера, положение локальных разрешенных уровней примесных атомов V группы таблицы Менделеева в элементарных полупроводниках IV группы. Предположим, например, что в одном из узлов кристалла германия находится атом мышьяка, имеющий пять электронов в валентной оболочке. Четыре валентных электрона участвуют в образовании ковалентных связей с четырьмя соседними атомами германия.- Поскольку ковалентная связь является насыщенной, пятый электрон новой связи образовать не может. Находясь в кристалле, он сравнительно слабо взаимодействует с большим числом окружающих мышьяк атомов германия. Вследствие этого его связь с атомом As уменьшается и он движется по орбите большого радиуса. Его поведение подобно поведению электрона в атоме водорода. Таким образом, задача сводится к отысканию уровней энергии водородоподобного атома. При ее решении необходимо учесть следующие обстоятельства. Поскольку электрон движется не только в кулоновском поле иона мышьяка, но и в периодическом поле решетки, ему необходимо приписать эффективную массу т. Кроме того, взаимодействие электрона с атомным остатком As+, имеющим заряд Ze, происходит в твердом теле, обладающем диэлектрической проницаемостью г. С учетом этого потенциальная энергия электрона примесного атома  [c.237]

Время установления ионной поляризации несколько больше, чем электронной, что объясняется большей массой ионов. Однако оно достаточно мало (обычно не более 10 с), что обеспечивает практическую независимость соответствующей диэлектрической проницаемости от частоты.  [c.32]


В большинстве случаев при интенсивной ионной поляризации диэлектрики имеют положительный температурный коэффициент диэлектрической проницаемости. Эта закономерность объясняется тем, что при повышении температуры ослабляются упругие силы связи между ионами в узлах кристаллической решетки, что облегчает смещение ионов в электрическом поле.  [c.32]

Ионно-релаксационная поляризация. Используемые в технике твердые диэлектрики могут иметь неплотную упаковку объема частицами. В таких материалах образуются ионы, которые в ходе тепловых колебаний перебрасываются из положений временного закрепления на расстояния, соизмеримые с расстояниями между частицами (10 м), и закрепляются в новых положениях. В электрическом поле перебросы становятся направленными. В результате в диэлектрике возникает различие в расположении центров положительного и отрицательного зарядов, т. е. появляется электрический момент. Такой процесс называют ионно-релаксационной поляризацией. С ростом температуры число ионов, перебрасываемых в новые положения, увеличивается, поэтому растут поляризованность и диэлектрическая проницаемость. На рис. 5.16 приведена зависимость е, от температуры для натриево-силикатного стекла, в структуре которого имеют место слабосвязанные ионы.  [c.156]

Температурный коэффициент диэлектрической проницаемости у ионных кристаллов положителен.  [c.7]

Такие ионы в тепловом движении могут перемещаться на расстояния, значительно превышающие упругие смещения. Но в отличие от электропроводности этот процесс носит локальный, а не сквозной характер. Локальные тепловые перемещения слабо связанных ионов при наличии электронного поля создают асимметрию распределения электрических зарядов в диэлектрике и, следовательно, создают электрический момент в единице объема. Диэлектрическая проницаемость зависит от частоты электрического поля и от температуры. После снятия поля ионно-релаксационная поляризация постепенно ослабевает. Поляризация этого типа имеет замедленный характер и при высоких частотах не происходит.  [c.8]

Ионные кристаллы с пло т ной упаковкой молекул, соответствующие формам расположения частиц в кристаллах, характеризующиеся наибольшим числом частиц в единице объема кристалла, обладают электронной и ионной поляризацией, положительным температурным коэффициентом. Исключение составляет рутил (двуокись титана), имеющий отрицательный температурный коэффициент диэлектрической проницаемости, который объясняется электронной природой поляризации.  [c.12]

Ионные кристаллы с неплотной упаковкой частиц обладают электронной, ионной и ионно-релаксационной поляризациями, характеризуются невысоким значением диэлектрической проницаемости, но большим положительным температурным коэффициентом.  [c.12]

Неорганические диэлектрики аморфной структуры, не содержащие полярных групп. К ним относятся, прежде всего, неорганические стекла, которые характеризуются ионно-релаксационной поляризацией. Диэлектрическая проницаемость стекол значительно зависит от их химического состава и температуры в пределах е = 3,8 -ь 20.  [c.12]

Диэлектрическая проницаемость чистых кварцевых и борных стекол без примесей немного превышает квадрат коэффициента преломления стекла, так как она определяется, главным образом, электронной поляризацией. У стекол сложного состава (технических стекол) при введении щелочных или щелочно-земельных металлов структурная сетка стекла изменяется. При введении щелочного окисла в стекло вводится избыточный кислород, и уже не каждый атом кислорода связан с двумя атомами кремния. Часть атомов кислорода связана с одновалентным атомом щелочного металла. Такой атом отдает один электрон ближайшему атому кислорода и оказывается положительным ионом. Одновалентный ион имеет большую свободу перемещения и может создавать тепловую ионно-релаксационную поляризацию.  [c.13]

При содержании в стекле щелочно-земельных металлов двухвалентный ион щелочно-земельного металла связан не с одним, а с двумя атомами кислорода и поэтому закреплен значительно сильнее, чем ион щелочного металла структурная сетка такого стекла не имеет разрывов и структурная упаковка атомов более плотна, чем у щелочного стекла. Поэтому диэлектрическая проницаемость бариевых, кальциевых и т. п. стекол невелика и мало зависит от температуры и частоты. -  [c.13]


Свинцовые стекла имеют повышенную диэлектрическую проницаемость, но это, по-видимому, связано с большой электронной поляризацией и смещением поляризованного атома свинца. Тепловая ионная поляризация связана с диэлектрическими потерями.  [c.13]

Твердые диэлектрики, представляющие собой ионные кристаллы с неплотной упаковкой частиц (например, электротехнический фарфор), в которых наблюдается, помимо электронной и ионной, также и ионно-релаксационная поляризация, характеризуются в большинстве случаев сравнительно невысоким значением диэлектрической проницаемости и большим положительным температурным коэффициентом ТКе, (рис. 1-7).  [c.26]

Рис. 1-6. Зависимость диэлектрической проницаемости от температуры для ионного кристалла K I Рис. 1-6. Зависимость <a href="/info/10123">диэлектрической проницаемости</a> от температуры для ионного кристалла K I
Полярные жидкости всегда имеют повышенную проводимость по сравнению с неполярными, причем возрастание диэлектрической проницаемости приводит к росту проводимости. Сильнополярные жидкости отличаются настолько высокой проводимостью, что рассматриваются уже не как жидкие диэлектрики, а как проводники с ионной электропроводностью.  [c.34]

Проведенные рассуждения имеют лишь качественный характер , поскольку в настоящее время еще неясно влияние изменения диэлектрической проницаемости на энергию активированного комплекса, а теоретический расчет энергии гидратации ионов (в связи с диэлектрической проницаемостью растворителя) представляет сложную и еще нерешенную задачу.  [c.171]

Диэлектрическая проницаемость стекла с преимущественно электронной поляризацией (кварцевое стекло, стеклообразный борный ангидрид)—самая низкая, но по мере увеличения в составе стекла ионов щелочных и тяжелых (особенно свинца и бария) металлов, обладающих высокой поляризуемостью, возрастает влияние ионной поляризации, в связи с чем диэлектрическая проницаемость стекла неуклонно повышается и становится высокой.  [c.456]

Диэлектрическая проницаемость диэлектрических материалов мало зависит от структуры и тангенса потерь материала. Она обусловливается свойствами входящих в состав материала ионов. Не учитывая явлений, происходящих в электродах, диэлектрическая проницаемость диэлектрика является величиной, зависящей от четырех составляющих — не-  [c.453]

Несобственная диэлектрическая проницаемость составляет ту часть диэлектрической проницаемости, которая не связана с ионами и электронами материала. Она, как правило, бывает меньше 1 %.  [c.453]

Диэлектрическую проницаемость, определяемую в основном e , обнаруживают у окислов, поскольку ионы кислорода имеют сравнительно большие размеры и бывают сильно деформированными. В этом случае диэлектрическая проницаемость имеет обратную зависимость от массы и атомного номера, т. е. обратно пропорциональна количеству электронов в электронных облаках ионов (рис. 19). Разброс на графике обусловлен изменением ионного объема. Фактически  [c.453]

Ионная упругая поляризация. Она происходит в кристаллических диэлектриках, построенных из положительных и отрицательных ионов, — в галоидно-щелочных кристаллах, слюдах, керамиках. В электрическом поле в таких диэлектриках происходит смещение электронных оболочек в каждом ионе — электронная поляризация. Кроме того, упруго смещаются друг относительно друга подрешеткииз положительных и отрицательных ионов (рис. 5.12,6), т. е. происходит упругая ионная поляризация. Это смещение приводит к появлению дополнительного электрического момента увеличивающего поляризованность, а следовательно, и диэлектрическую проницаемость на Еги. Таким образом, диэлектрическая проницаемость ионного кристалла равна = ег . + ги, где Еги зависит от физической природы ионов, сил их взаимодействия и строения кристаллической решетки.  [c.154]

Твердые диэлектрики, представляющие собой ионные кристаллы с плотной упаковкой частиц, обладаьзт электронной и ионной поляризациями и имеют диэлектрическую проницаемость, изменяющуюся в широких пределах. Температурный коэффициент диэлектрической проницаемости ионных кристаллов в большинстве случаев положителен. Примером одного из таких диэлектриков служит КС1 (рис. 1-6).  [c.26]

Ионные кристаллы, как правило, прозрачны в видимой области спектра, так как полюсы резонансных членов в правой части (2.63), обусловленных электронами и ионами, и связанные с ними полосы поглощения находятся соответственно в ультрафиолетовой и инфракрасной областях спектра. Но зависимость показателя преломления от частоты в видимой области существшно определяется этими членами, хотя сами резонансные частоты о)о и ац находятся за ее пределами. Эти частоты, а также постоянные Со и С, в (2.63) могут быть найдены по измерениям показателя преломления в видимой области (при нескольких значениях частоты ю). Полагая затем в (2.63) о)=0, можно получить статическое значение диэлектрической проницаемости е (0) =л (0)= 1-f Со/юо + ,/to . Так как io/ too, основную роль здесь играет член с ю,, т. е. главный вклад в е (0) обусловлен ионной поляризуемостью.- Замечательно, что найденное таким образом из оптических измерений в видимой области статическое значение е вполне удовлетворительно согласуется с измерениями диэлектрической проницаемости ионных кристаллов электрическими методами.  [c.100]


Твердые диэлектрики, представляющие собой ионные кристаллы с плотной упаковкой частиц, обладают электронной и ионной поляризациями и имеют величину диэлектрической проницаемости, лежащую в широких пределах. Температурный коэффициент диэлектрической проницаемости ионных кристаллов в большинстве случаев имеет положительное значение вследствие того, что при повышении температуры наблюдается не только уменьшение плотности вещества, но и возрастание поляризуемости ионов, причем влияние этого фактора сказывается на величине е сильнее, чем изменение плотности. Исключением являются кристаллы, содержащие ионы титана — рутил (Т10г)  [c.37]

Таким образом, каждая пара ионов образует упругий диполь. Наряду с процессом поляризации ионного смещения в ионных кристаллах протекает электронная поляризация. Общая интенсивность процессов поляризации у ионных кристаллических диэлектриков (радиокерамические материалы, слюда) довольно большая, поэтому значения диэлектрической проницаемости у них относительно большие (е = 7 Ч- 12 и выше). Оба процесса поляризации мгновенные, поэтому диэлектрическая проницаемость ионных кристаллических диэлектриков не зависит от частоты приложенного напряжения. Ионные диэлектрики широко применяют в радиотехнике.  [c.25]

Поскольку колебания решетки в какой-то мере ангармоничны (а следовательно, затухают), величина е имеет также мнимую составляющую. Это приводит к уширению резонансной линии, соответствующей остаточным лучам. Типичные кривые частотной зависимости диэлектрических проницаемостей ионных кристаллов, найденные по их оптическим свойствам, представлены на фиг. 27.7. Диэлектрические характеристики щелочно-галоидных кристаллов приведены в табл. 27.2.  [c.176]

В настоящем разделе мы рассмотрим задачу более формально, исследуя зависимость диэлектрической проницаемости среды от частоты световых волн, вызывающих смещение электрических зарядов вещества. Как показывает явление Зеемана (см. гл. XXXI), главную роль в оптической жизни атома играет электрон поэтому в дальнейшем мы для удобства будем говорить именно об электроне однако все наши рассуждения остаются в силе и для иных заряженных частиц, входящих в состав атома. В частности, при исследовании показателя преломления в области длинных волн необходимо учитывать влияние ионов, способных к сравнительно медленным (инфракрасным) колебаниям.  [c.549]

Влияние скорости потока на сдвиг потенциала (эффект магнитной обработки) имеет экстремальный характер (рис. 46), что совпадает с результатами исследований других авторов. Максимальный эффект магнитной обработки был отмечен при скорости потока, равной 2,5 м/с, и, циркулируя с этой скоростью, он за 30 мин пересекал магнитное поле 12 раз. Эффект магнитной обработки наблюдался только в циркулирующем потоке, в неподвижном растворе магнитное воздействие не изменяло его наводороживающей способности. Это связано с тем, что движение раствора при магнитной обработке приводит к нарущению водородных связей, увеличению молекулярных диполей и диэлектрической проницаемости раствора. Возбужденные молекулы воды связывают ионы водорода, что уменьшает адсорбционную активность сероводорода.  [c.191]

Вакуумная электроника, основанная на использовании движения свободных электронов и ионов в вакууме или разреженных и сжатых газах, дала возможность создать вакуумные генераторы и усилители элег<тромагнитных колебаний в широчайшем спектре частот., Имеются приборы, основанные на вакууме, которые преобразуют тепловую, световую и механическую энергию в электрическую. Функции, выполняемые электровакуумными приборами во всех отраслях радиоэлектроники, весьма обширны и разнообразны. Этому способствовало изучение электрических свойств воздуха и вакуума, разработка и применение новых газов и паров штетических жидкостей, обладаюихих высокой электрической прочностью, малыми значениями диэлектрической проницаемости и потерь, а также применение новых видов пластмасс и керамики, особенно пористых.  [c.3]

Электронная поляризация представляет собой упругое смещение л деформацию электронных оболочек атомов и ионов. Время уста-товления электронной поляризации ничтожно мало (около 10"с). Диэлектрическая проницаемость вещества с чисто электронной поляризацией численно равна квадрату показателя преломления света п. Смещение и деформация электронных орбит атомов или яонов не зависит от температуры, однако электронная поляризация вещества уменьшается с повышением температуры в связи с тепловым расширением диэлектрика и уменьшением числа частиц в единице объема. Изменение диэлектрической проницаемости диэлектрика с злектронной поляризацией при изменении температуры обусловли-зается лишь изменением его плотности (подробнее см. далее стр. 23). Электронная поляризация наблнадается у всех видов диэлектриков и не связана с потерей энергии.  [c.19]

Исключением являются кристаллы, содержащие ионы титана (рутил TiOa и некоторые титанаты), температурный коэффициент диэлектрической проницаемости которых отрицателен. Это объясняется преобладающей в них э/ектронной поляризацией, усиленной под влиянием добавочного внутреннего поля при ионном смещении.  [c.26]

Примеси внедрения. Структуры типа алмаза. Тип электропроводности определяется размерами и электроотрицательностью примесных атомов, внедряющихся в междоузлия решеток полупроводников IV группы периодической системы. Эксперимент показывает, что, в противоречие с указанным выше правилом валентности, литий (I группа), внедряясь в междоузлия решетки германия, будет донором, а кислород (VI группа) — акцептором. Внедрение большого по размерам атома лития в тесные междоузлия решетки германия оказывается возможным только после его ионизации вследствие слабой связи валентного электрона, легко о грыва-ющегося от своего атома в среде с большой диэлектрической проницаемостью (б германия-16). Образовавшийся ион лития меньших размеров может уже внедряться в тесные междоузлия решетки, а освободившийся электрон обусловливает электропроводность п-типа. Внедрение в междоузлия решетки полупроводника атомов кислорода, имеющих сравнительно небольшие размеры и большую электроотрицательность, приводит к захватам электронов из атомов полупроводника, вследствие чего возникает электропроводность р-типа. Если атом Ge или Si под влиянием энергетического воздействия перебрасывается в междоузлие, то образуются два примесных уровня донорный внедренного атома и акцепторный пустого узла.  [c.236]

Процессы восстановления ионов титана, хотя и в меньшей мере, происходят также во время обжига покровной змали. Это говорит о том, что при высоких температурах в расплавленном покрытии создаются восстановительные условия, что способствует переводу переходных элементов в более низкую степень окисления. Наиболее сильно этот процесс происходит в слоях покрытия, прилегающих к металлу, и, по-видимому, может изменять не только электросопротивление, но и другие свойства — химическую устойчивость, диэлектрическую проницаемость.  [c.120]

Кроме того, в твердых диэлектриках наблюдаются электроннорелаксационная, резонансная, структурная и самопроизвольная (спонтанная) поляризации, которые в полимерных материалах, как правило, не проявляются. Таким образом, пз всех рассмотренных видов поляризации стеклопластики на основе полиэфирных, эпоксидных, фенольно-формальдегидных и других смол следует отнести к материалам, которые обладают почти всеми видами поляризации одновременно, так как смолы обладают электронной и диполы-ю-релаксациоиной поляризациями одновременно, а стеклонаполнитель — ионно-релаксационной поляризацией. Основной предпосылкой для определения плотности полимерных материалов служит формула Клаузиуса—Моссоти, связывающая электрические свойства молекул, диэлектрическую проницаемость, поляризуемость и дипольный момент с плотностью и молекулярной массой  [c.98]



Смотреть страницы где упоминается термин Диэлектрическая проницаемость ионного : [c.51]    [c.5]    [c.164]    [c.32]    [c.138]    [c.247]    [c.157]    [c.13]    [c.8]    [c.9]   
Теория твёрдого тела (1980) -- [ c.0 ]



ПОИСК



Диэлектрическая (-йе)

Диэлектрическая проницаемост

Диэлектрическая проницаемость

Диэлектрическая проницаемость ионного кристалла

Иониты

Ионов

По ионная

Проницаемость



© 2025 Mash-xxl.info Реклама на сайте