Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Слиток неметаллические включения

Перенос капель металла через основной шлак способствует их активному взаимодействию, удалению из металла серы, неметаллических включений и растворенных газов. Металлическая ванна непрерывно пополняется путем расплавления электрода, под воздействием кристаллизатора постепенно формируется в слиток 6. Последовательная и направленная кристаллизация способствует удалению из металла неметаллических включений и газа, получению плотного однородного слитка.  [c.47]


Если слиток загрязнен неметаллическими включениями, обычно располагающимися по границам кристаллитов, то в результате обработки давлением неметаллические включения вытягиваются в виде волокон по направлению наиболее интенсивного течения металла. Эти волокна выявляются травлением и видны невооруженным глазом в форме так называемой волокнистой макроструктуры (рис. 3.3, а). Полученная а результате обработки давлением литого металла во-  [c.58]

В результате ЭШП содержание кислорода в металле снижается в 1,5. .. 2 раза, концентрация серы снижается в 2. .. 3 раза, уменьшается содержание неметаллических включений, они становятся мельче и равномерно распределяются в объеме слитка. Слиток отличается плотностью, однородностью, хорошим качеством поверхности благодаря наличию шлаковой корочки 5, высокими механическими и эксплуатационными свойствами стали и сплавов. Слитки выплавляют круглого, квадратного, прямоугольного сечений массой до 110 т.  [c.52]

Каждая капля металла проходит через слой шлака, собирается в ванне 3 и затвердевает в кристаллизаторе 4, образуя слиток 5. В конце переплава опускается поддон-затравка бис его помощью извлекают затвердевший слиток. Качество полученного металла очень высокое, он отличается высокой чистотой, отсутствием неметаллических включений, количество серы в слитке уменьшается вдвое.  [c.91]

Электронно-лучевой переплав (ЭЛП). Применяется для изготовления деталей ракетной, космической техники, для получения тугоплавких металлов — тантала, молибдена, ниобия и других металлов, отличающихся очень высокой чистотой. Плавление металлов (рис. 3.9) происходит в глубоком вакууме под действием потока электронов, излучаемых высоковольтной катодной пушкой, создающей напряжение в 20-30 тыс. В. Излучаемые электроны направляются на металл, при столкновении с которым их кинетическая энергия переходит в тепловую. Металл плавится, капли его стекают в водоохлаждаемый кристаллизатор и застывают, образуя слиток особо чистого металла в отношении газов и неметаллических включений.  [c.93]

Изложницы — это чугунные формы. Разливка в изложницы может происходить сверху или снизу. При разливке сверху сталь заливают в каждую изложницу отдельно и получают слитки большого сечения (рис. 3.11,а). При разливке снизу (сифонная разливка) одновременно заливают несколько изложниц и получают слитки малого сечения (рис. 3.11,6). При разливке стали сверху оборудование несложное, но производительность низкая. Поверхность слитка из-за брызг металла не всегда качественная. При разливке стали снизу поверхность слитка чистая, но в слиток попадают неметаллические включения, велики отходы металла в литниках.  [c.95]


Экзогенные неметаллические включения — частицы различных соединений, попавшие в жидкую сталь или в слиток извне, т е из шихтовых материалов, огнеупорной футеровки сталеплавильных агрегатов и устройств и т п  [c.19]

Благодаря этому теплу электрод расплавляется, капли металла, проходя через слой жидкого шлака, очищаются от вредных примесей (серы), неметаллических включений и газов. Из этих капель в водоохлаждаемом кристаллизаторе образуется высококачественный слиток (рис, 6). Интенсивный отвод тепла обеспечивает направленную снизу вверх кристаллизацию металла в слитке. В полученных слитках отсутствует пористость, усадочная рыхлость, неметаллические и газовые включения, слитки однородны по строению. Содержание серы в стали после переплава уменьшается почти в два раза.  [c.36]

Дефекты слитка. Стальной слиток всегда имеет ряд дефектов. Основными из них являются усадочная раковина, усадочная рыхлость, ликвация, неметаллические включения, газовые раковины и др.  [c.48]

Электрод опускают до соприкосновения с флюсом, находящимся на затравке, и включают ток. В процессе плавления рабочий флюс превращается в шлак с температурой 2500°. Под действием этого тепла электрод расплавляется, каждая капля его проходит через слой расплавленного шлака и очищается от вредных примесей и газов. Из этих капель формируется новый слиток. После электрошлакового переплава качество нового слитка очень высокое. Содержание серы уменьшается в полтора-два раза. Сталь отличается высокой чистотой в отношении неметаллических включений, чему способствует отсутствие огнеупорной кладки, соприкасающейся с металлом.  [c.93]

Этот способ применяется в тех случаях, когда требуется получить небольшое количество крупных слитков. Преимущество его в том, что он позволяет разливать не очень горячую сталь при этом получается более здоровый слиток, с меньшей усадочной раковиной. Качество поверхности слитка получается невысокое из-за брызг при заливке, но неметаллических включений в слитке образуется меньше.  [c.95]

Неметаллические включения главным образом представляют собой обломки от огнеупорного материала, попадающие в слиток с металлом из печи или разливочного ковша, а также шлак, не полностью отделившийся от жидкого металла при затвердевании.  [c.194]

Если слиток загрязнен неметаллическими включениями, обычно располагающимися по границам кристаллитов, то в результате обработки давлением неметаллические включения вытягиваются в виде прядей (волокон) по направлению наиболее интенсивного  [c.83]

При переплаве металл хорошо очищается от газов и неметаллических включений, а в результате направленной кристаллизации в водоохлаждаемом кристаллизаторе (снизу — вверх) слиток не имеет усадочной раковины и других дефектов. Этим способом можно получать крупные слитки (до 50 т) с высокой однородностью по химическому составу и структуре. Расход электроэнергии на переплав относительно небольшой — 300—450 кВт-ч/т.  [c.82]

Слиток литой стали является неоднородным в разных своих частях как по химическому составу, так и по внутреннему кристаллическому строению и механическим свойствам. Он содержит неметаллические включения, пустоты, пузыри, раковины. Все это является дефектами слитка, и чем более полно будут устранены те или иные дефекты, тем более высокими свойствами будут обладать как слиток, так и изготовленные из него детали.  [c.184]

Слиток стали неоднороден как по химическому составу, так и по механическим свойствам. Различают зональную (в пределах различных зон слитка) и дендритную (внутрикристаллитную) ликвацию. В слитке обычно бывают неметаллические включения, пустоты, пузыри, раковины и другие дефекты. Некоторые дефекты слитков дается устранить термической обработкой. Для выравнивания дендритной (внутрикристаллитной) ликвации, воз-- никающей в процессе кристаллизации, а также понижения твердости перед обдиркой, проводимой для удаления поверхностных дефектов, слитки легированных сталей подвергают термической обработке.  [c.201]

Перенос капель металла через шлак, интенсивное перемешивание их со шлаком и довольно длительное пребывание металла ванны в контакте со шлаком способствует их активному взаимодействию. В результате взаимодействия происходит рафинирование металла от вредных примесей, удаление неметаллических включений и растворенных газов. Металлическая ванна, непрерывно пополняемая за счет расплавления электрода, под воздействием водоохлаждаемого кристаллизатора, постепенно формируется в слиток. Кристаллизация металла последовательная и направленная снизу вверх, что обусловлено преимущественным теплоотводом через поддон кристаллизатора. Замедленная и направленная кристаллизация также благоприятствует удалению из металла неметаллических включений и пузырьков газа и способствует получению плотного и однородного слитка. Для макроструктуры слитков электрошлакового переплава характерна радиально-осевая направленность кристаллов, отсутствие усадочных и ликвационных дефектов, равномерное распределение неметаллических включений. Слиток электрошлакового переплава отличается ровной поверхностью, что связано с образованием на холодных стенках изложницы тонкого слоя твердого шлака (гарниссажа). Внутри этой шлаковой рубашки и происходит формирование слитка.  [c.339]


В результате электрошлакового переплава содержание кислорода в металле снижается в 1,5—2 раза, понижается концентрация серы и соответственно уменьшается в 2—3 раза загрязненность металла неметаллическими включениями, причем они становятся мельче и равномерно распределяются в объеме слитка. Слиток отличается большой плотностью, однородностью и хорошей поверхностью. Все это обусловливает высокие механические и эксплуатационные свойства сталей и сплавов электрошлакового переплава.  [c.341]

Сущность этого метода состоит в следующем. Электроды, изготовленные из стали или какого-либо сплава литьем, ковкой или прокаткой, постепенно расплавляют под слоем специального шлака в водоохлаждаемом стальном (лучше медном) кристаллизаторе. Каждая капля расплавленного металла попадает в слой высоконагретого (температура около 2500° С) жидкого основного шлака специального состава и отдает значительную часть содержащихся в металле неметаллических включений, серы и газов. Очищенная капля затем попадает в кристаллизатор, быстро затвердевает, и постепенно из капель образуется слиток определенной высоты и формы. Форма слитка зависит от формы кристаллизатора и может быть самой разнообразной. После получения слитка заданной высоты процесс прекращают, выключают механизм подачи электрода и постепенно снижают силу тока до нуля. Затем электрод поднимают и особым механизмом извлекают слиток из кристаллизатора. Дальнейшее охлаждение слитка осуществляют в зависимости от марки стали или сплава.  [c.31]

Стальной слиток обладает не только неоднородностью кристаллического строения, но и неравномерностью распределения основных элементов, входящих в состав стали, неметаллических включений и газов. Неравномерность распределения называют ликвацией. При равновесном коэффициенте распределения Ка< 1 (5.1) примесь оттесняется в расплав, а при Ко > 1 примесь захватывается твердой фазой. Для характеристики ликвации примеси используют коэффициент ликвации Кц, который пропорционален К  [c.348]

Основная область применения печей электрошлакового переплава (ЭШП) - производство слитков из высококачественных сталей (шарикоподшипниковых. конструкционных, коррозионно-стойких, теплостойких, валковых и др.). Слиток, полученный ЭШП отличается от обычного слитка, отлитого в изложницу, отсутствием усадочной раковины, осевой пористости. осевой и внецентренной ликвации, чистотой по неметаллическим включениям и сниженной анизотропией механических свойств, лучшей деформируемостью. ЭШП также применяют для улучшения качества  [c.241]

Газовые раковины ( пузыри ) завариваются при прокатке, и почти весь слиток идет в дело. Массовое содержание углерода в кипящей стали не более 0,3% большее его содержание вызывает чрезмерное выделение газов и увеличение брака стали. Кипение в изложнице со свободным выходом газов (до образования корки) способствует более полному удалению из слитка неметаллических включений, поэтому пластичность кипящей стали выше, чем спокойной.  [c.70]

А. М. Мадянов [135] для улучшения структуры обычных и непрерывных стальных слитков применял в качестве затравки чугунные н железные порошки. При введении 0,6% чугунного порошка обнаружено уменьшение пористости и количества трещин в непрерывном слитке стали СтЗсп. Введение чугунного порошка (2,5%) в обычный слиток стали 50 привело к уменьшению ликвации углерода в 7 раз, серы в 6 раз, фосфора в 5,3 раза и кремния в 2,3 раза. Добавка железного порошка до 2% не загрязняет стальной слиток неметаллическими включениями. Заслуживают особого внимания опыты по введению в кристаллизующийся слиток стали Г13Л в виде затравки порошка Fe—Мп. Добавка 1% порошка приводит к увеличению вдвое предела прочности стали.  [c.170]

В результате ЭШП содержание кислорода в металле снижается в 1,5—2 раза, понижается концентрация серы, в 2—3 раза уменьшается содержание неметаллических включений, они становятся мельче и равномерно распределяются в объеме слитка. Слиток отличается плотностью, однородностью, хорошим качеством поверхности благодаря наличию шлаковой корочки 5, высокими механическими и эксплуатационными свойствами стали и сплавов. Слитки выплавляют круглого, квадратного, прямоугольного сечения массой до ПО т. Наиболее широко ЭШП используют при выплавки высококачественных сталей для шарикоподшипников, жаропрочных сталей для дисков и лопаток турбин, валов компрессоров, авиацпониых конструкций.  [c.47]

При подаче напряжения между расходуемым электродом-катодом 3 и затравкой-знодом 8 возникает дуга. Выделяющаяся теплота расплавляет конец электрода капли 4 жидкого металла, проходя зону дугового разряда, дегазируются, заполняют изложницу и затвердевают, образуя слиток 7. Дуга горит между расходуемым электродом и жидким металлом 5 в верхней части слитка на протяжении всей плавки. Сильное охлаждение слитка и разогрев дугой ванны металла создают условия для направленного затвердевания слитка, вследствие чего неметаллические включения сосредоточиваются в верхней части слитка, а усадочная раковина в слитке мала. Слитки ВДП содержат мало газов, неметаллических включений, отличаются высокой равномерностью химического состава, повышенными механическими свойствами. Из слитков изготовляют ответственные детали турбин, двигателей, авиационных конструкций. Масса слитков достигает 50 т.  [c.47]

Наплавляемый металл стекает в кристаллизатор и по мере наплавленйя слиток вытягивается. Процесс напла-вления происходит непрерывно. В этих печах могут переплавляться как целые штанги, так и заготовки, набранные из прутков, мелкого профиля, листовых отходов проката. Слитки, полученные в плазменно-дуговых печах, имеют высокое качество поверхности и пониженное содержание неметаллических включений.  [c.214]

Электронно-лучевой переплав на холодном поду. Задача процесса применительно к суперсплавам заключается в дополнительной очистке от примесных химических элементов и снижении загрязненности неметаллическими включениями. Сначала электронно-лучевую плавку под вакуумом применяли при капельном оплавлении и литье тугоплавких металлов. Первые усилия по применению этого метода для производства суперсплавов дали неудовлетворительные результаты, так как в слиток попадали неоплавленные компоненты шихтовых материалов. Процесс электронно-лучевого переплава на холодном поду был разработан с цедью разрешения этих затруднений. Первая крупномасштабная установка построена в начале 1960-х гг., но применяли ее от случая к случаю и главным образом для обработки титана [8]. Позднее построили две новых крупных установки, и хотя их по-прежнему используют при производстве титановых материалов, можно с их помощью рафинировать и суперсплавы. Однако применительно к суперсплавам этот процесс все еще носит характер разработок.  [c.147]


Если слиток зафязнен неметаллическими включениями, обычно располагающимися по фаницам кристаллитов, то в результате обработки давлением неметаллические включения вытягиваются в виде волокон по направлению наиболее интенсивного течения металла. Эти волокна выявляются травлением и видны невооруженным глазом в форме так называемой волокнистой макроструктуры (рис. 3.2, а). Полученная в результате обработки давлением литого металла волокнистая макроструктура не может быть разрушена ни термической обработкой, ни последующей обработкой давлением. Последняя в зависимости от направления пластического течения металла может изменить лишь направление и форму волокон макроструктуры.  [c.62]

Разливка в изложницы может происходить сверху или снизу. При разливке сверху поверхность слитка из-за брызг M Taj a не всегда качественная. При разливке снизу поверхность слитка чистая, но в слиток попадают неметаллические включения.  [c.88]

Вакуумно-дуговой переплав применяется для улучшения качества стали путем обработки ее вакуумом. При этом из стали удаляются газы и неметаллические включения. Вакуумная дуговая печь (рис. 3.8) имеет вакуумную камеру 1. По оси камеры перемещается водоохлаждаемый шток 2, к которому крепится расходуемый- электрод 3, изготовленный из слитка переплавляемой стали. При подаче напряжения между электродом и затравкой 8 возникает электрическая дуга. Конец электрода расплавляется, капли жидкого металла 4 дегазируются и стекают, заполняя водоохлаждаемый криеталлиза-тор 6 и образуя слиток 7, Электрическая дуга горит между расходуемым электродом и ванной жидкого металла 5 в течение всей плавки. В результате направленной кристаллизации неметаллические включения сосредотачиваются в верхней части слитка. Получающиеся слитки характеризуются равномерным химическим составом, однородной структурой, повышенными механическими свойствами. Масса слитков доходит до 50 т.  [c.92]

Электрод опускают до соприкосновения с флюсом, находящимся на затравке, и включают ток. В процессе плавления рабочий флюс превращается в шлак с температурой 2500 С. Под действием тепла электрод расплавляется, каждая капля его проходит через слой расплавленного шлака и очищается от вредных примесей и газов. Из этих капель формируется новый слиток. Содержание серы в слитке уменьшается в полтора-два раза. В стали почти нет неметаллических включений, что объясняется тем, что в печц нет огнеупорной кладки, соприкасающейся с металлом. Особенно ценным свойством этой стали является почти равномерное распределение в слитке остающихся после переплава включений, крупные скопления которых являются основной причиной разрушения изделий. Слитки не имеют пористости, усадочной рыхлости, мельчайших внутренних трещин, что очень важно при работе деталей в условиях ударных нагрузок. Электрошлаковый переплав с успехом применяют для получения шарикоподшипниковой, быстрорежущей, нержавеющей и некоторых других сталей.  [c.74]

Вакуумно-дуговой переплав. Такой переплав применяют для удаления из металла газов и неметаллических включений. Суш,ность процесса заключается в снижении растворимости газов в стали при снижении давления и устранении взаимодействия ее с огнеупорными материалами футеровки печи, так как процесс ВДП осуществляется в водоохлаждаемых медных изложницах. Для осуществления процесса используют вакуумные дуговые печи с расходуемым электродом (рис. II. 16). В зависимости от требований, предъявляемых к металлу, расходуемый электрод может быть получен механической обработкой слитка, выплавленного в электропечах. Расходуемый электрод 3 закрепляют на водоохлаждаелюм штоке 2 и помещают в корпус 1 печи и далее в медную водоохлаждаемую изложницу 6. Из корпуса печи вакуум-насосами откачивают воздух до остаточного давления 1,33 Н/м . При подаче напряжения между расходуемым электродом-катодом и затравкой-анодом 8, помещенной на дно изложницы, возникает дуговой разряд. Теплотой, выделяющейся в зоне разряда, расплавляется конец электрода капли 4 жидкого металла, проходя зону дугового разряда, дегазируются, постепенно заполняют изложницу и затвердевают, образуя слиток 7. Дуга горит между расходуемым электродом и ванной 5 жидкого металла, находящейся в верхней части слитка, на протяжении всей плавки. Благодаря сильному охлаждению нижней части слитка и разогреву дугой ванны жидкого металла в верхней его части созда-66  [c.66]

Чтобы избежать дефектов в готовой стали слиток отливают с прибыльной частью, которая составляет 14—22% веса металла и отрезается после прокатки слитка. Отрезается также 1—3% металла с противоположной стороны слитка, где могут находиться неметаллические включения, плёны и другие дег )екты.  [c.73]

Образовавшиеся пузырьки газообразной окиси углерода оттесняются кристаллизующимися дендритами от стенок к центру слитка и вверх, а также перемешивают оставшуюся еще в жидком состоянии сталь, несколько выравнивая ее химический состав. Выделение пузырьков газа из застывающего слитка создает впечатление кипения (что и обусловливает его название). Некоторые пузырьки окиси углерода не успевают выйти из слитка до его застывания, и в слитке образуются пустоты правильной круглой формы. Слитки кипящей стали получаются обычно без концентрированных усадочных раковин и имеют мало неметаллических включений, так как не раскисляются ферросплавами и алюминием, да и стоят они поэтому дешевле. f B последние десятилетия создано много установок для непрерывной разливки стали. Схема машины для непрерывной разливки стали, представляющей собой многоэтажное сооружение, показана на рис. 5.8. Сталь из разливочного ковша через промежуточный ковш непрерывной и равномерной струей заливается в кристаллизатор, представляющий собой слегка качающийся вверх и вниз двухстенный короб из красной меди, стенки которого интенсивно охлаждаются проточной водой. Благодаря этому сталь быстро формирует прочные и плотные стенки слитка. Из кристаллизатора слиток непрерывно вытягивается валками со скоростью, соответствующей скорости кристаллизации слитка. Ниже кристаллизатора до выхода из валков слиток подвергается вторичному охлаждению водяными душами, при этом заканчивается его затвердевание. После выхода из валков от непрерывно опускающегося слитка кислородно-газовой горелкой отрезают куски необходимой длины.  [c.55]

Из стали при разливке в вакууме удаляются около 60 % растворенного водорода и другие газы, уменьшается количество неметаллических включений, повышаются механические свойства и пластичность. Стоимость слитков, отлитых этим способом, значительно повышается. Для значительного улучшения качества стальных слитков в металлургии нашел применение так называемый электрошлаковый переплав (рис. 4.12). В слегка конусном водоохлаждаемом кристаллизаторе расплавляют слой шлака, содержащего значительное количество плавикового шпата. К дну изложницы подводят один нз полюсов источника переменного тока большой силы стальной стержень или слиток, отлитый любым путем, опускают в шлак и подводят к нему другой полюс при достаточно большой силе тока стальной стержень разогревается и начинает плавиться его часть, опущенная в шлак. Капли металла, про.чодя через шлак, очищаются от неметаллических включений и растворенных газов. Попадая на холодные стенки изложницы, капли начинают кристаллизоваться, образуя новый слиток. По мере его образования первичный слиток — электрод медленно опускают,  [c.79]

Разливка стали в изложницы сверху отличается большой простотой, слиток получается с меньшим количеством неметаллических включений и большей плотности. При сифонной разливке сталь заливают в изложницы через центровую и каналььв поддоне особенностью этого способа является одновременная отливка большого числа слитков, поверхность их получается чистой вследствие спокойного заполнения изложницы металлом  [c.212]



Смотреть страницы где упоминается термин Слиток неметаллические включения : [c.201]    [c.149]    [c.156]    [c.171]    [c.89]    [c.54]    [c.77]    [c.57]    [c.80]    [c.128]    [c.12]   
Металловедение и термическая обработка стали Том 1, 2 Издание 2 (1961) -- [ c.833 , c.834 ]



ПОИСК



Включения

Ликвация в стальном слитке. Неметаллические твердые включения

Неметаллические включения в модифицированном слитке

Слиток

Шта неметаллические



© 2025 Mash-xxl.info Реклама на сайте