Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Электрохимическая защита металлов от коррозии

Анодная электрохимическая защита металлов от коррозии  [c.321]

Анодная электрохимическая защита металлов от коррозии— сравнительно новый и очень специфический метод. Он основан на переходе металла из активного состояния в пассивное вследствие смещения его потенциала при анодной поляризации от внешнего источника тока.  [c.69]

В книге обобщен многолетний опыт исследования, разработки и внедрения анодной защиты металлов от коррозии. Значительная часть экспериментального материала выполнена в головной лаборатории анодной электрохимической защиты металлов от коррозии Минхимпрома.  [c.7]


Совершенствование метода анодной электрохимической защиты металлов от коррозии обусловило ряд новых требований к инженерным решениям аппаратуры, особенно к средствам контроля и регулирования потенциала,— высокая надежность  [c.116]

ПРОМЫШЛЕННОЕ ПРИМЕНЕНИЕ АНОДНОЙ ЭЛЕКТРОХИМИЧЕСКОЙ ЗАЩИТЫ МЕТАЛЛОВ ОТ КОРРОЗИИ  [c.136]

Изложенные в этой книге материалы показывают, что анодная электрохимическая защита металлов от коррозии сформировалась как самостоятельное направление в науке о коррозии.  [c.171]

На практике всегда стремятся к увеличению поляризации в коррозионном элементе. Благодаря поляризации металлов скорость коррозии уменьшается в сотни, а то и в тысячи раз. То, что более старые конструкции корродируют медленнее, чем более новые, также является следствием поляризации. Искусственно создаваемая с помощью внешнего источника постоянного тока поляризация является основой электрохимической защиты металлов от коррозии.  [c.33]

Электрохимическая защита металла от коррозии происходит за счет катодной поляризации металла до потенциала, при котором замедляется процесс ионизации (рис. 9.9). Анодному процессу растворения металла и сопровождающему его катодному процессу соответствуют равновесные потенциалы д и Е . Коррозионный потенциал ор при этом соответствует точке пересечения поляризационных кривых. Если при катодной поляризации будет достигнута плотность катодного тока, равная то потенциал металла снизится до величины В этих условиях металл будет частично защищен от коррозии, так как скорость растворения уменьшится до величины, соответствующей плотности тока /кор. Если же плотность катодного тока возрастает до /защ, то потенциал металла понизится до величины и на его поверхности будет протекать только катодный процесс.  [c.281]

Электрохимическая защита металлов от коррозии. Электрохимическая защита металла от коррозии осуществляется с помощью протектора или подведенного извне постоянного тока.  [c.230]

Различают следующие два вида электрохимической защиты металлов от коррозии с помощью постоянного электрического тока от внешнего источника катодную и анодную защиту.  [c.241]

Эффективность электрохимической защиты металлов от коррозии, в том числе и защиты внешним током, принято характеризовать величиной защитного эффекта г С%) и коэффициентом защитного действия к, г а)  [c.242]


Воспользовавшись рассмотренными выше закономерностями электрохимической кинетики, можно оценить опасность коррозии и возможность изменения направления электродной реакции. Эти данные являются, как будет показано ниже, важными для решения вопросов электрохимической защиты металлов от коррозии.  [c.33]

Электрохимическая защита металлов от коррозии 323 Элементы химические — Атомный вес 15—45  [c.559]

Катодная защита является типичным методом электрохимической защиты металла от коррозии. Защитный эффект достигается при катодной поляризации защищаемого металла от внешнего источника постоянного тока до потенциала определенной величины. Для осуществления катодного сдвига потенциала в поляризующую цепь включается дополнительный электрод, служащий анодом. Катодная защита эффективна только в том случае, если коррозионная среда обладает достаточно высокой электропроводимостью.  [c.80]

Изложены общие сведения об истории и динамике развития проблемы защиты металлов от коррозии. Показано технико-экономическое значение защиты металлов от-коррозии как одной из важнейших народнохозяйственных проблем. Рассмотрены основные виды коррозионных разрушений и проанализированы их причины. Описаны физико-химическая природа и современная электрохимическая теория коррозионных процессов, их зависимость от внешних условий и свойств металла.  [c.32]

Во всех промышленно развитых странах все большее значение приобретает проблема защиты металла от коррозии. Среди различных способов, используемых для ее решения, особое место занимают системы электрохимической (катодной) защиты, широко применяемые для предотвращения разрушения металлических сооружений, эксплуатируемых в условиях природных вод и грунтов. Область применения катодной защиты весьма широка она охватывает подземные водопроводы, газо-, нефте- и продуктопроводы и металлические трубопроводы других назначений, проложенные в земле, подземные кабели связи, силовые кабели с металлической оболочкой и броней, кабели, проложенные в трубах, заполненных сжатым газом или маслом, различные резервуары — хранилища и цистерны, речные и морские суда, портовое оборудование, установки питьевой воды и различные аппараты химической промышленности, нуждающиеся во внутренней защите.  [c.13]

Б. Определение параметров проектируемых систем электрохимической защиты. Основными параметрами систем электрохимической (протекторной, катодной или анодной) защиты металлов от коррозии являются  [c.9]

С современных позиций рассмотрено электрохимическое поведение металлов под адсорбционными и фазовыми слоями электролитов. Приведено большое количество экспериментальных данных о влиянии внешних условий на развитие коррозии металлов. На основе физико-математических моделей рассмотрена возможность использования ускоренных лабораторных испытаний для прогнозирования коррозионного поведения металлов в различных климатических зонах. Дана оценка эффективности современных средств и методов защиты металлов от коррозии.  [c.2]

Надежным средством защиты металлов от коррозии являются лакокрасочные покрытия. Коррозия под лакокрасочными покрытиями, электрохимическая по своей природе, зависит от природы и концентрации электролитов и паров кислот в воздухе, поэтому к ней применимы все основные законы электрохимического разрушения металлов.  [c.33]

Теоретически полная защита металла от коррозии при катодной поляризации возможна тогда, когда металлу будет сообщен потенциал более отрицательный, чем термодинамический потенциал металла. Величина защитного эффекта при некотором смещении потенциала Дф определяется катодной и анодной поляризуемостью Дф/Дг системы. Катодная защита эффективна тогда, когда металл обладает большой катодной поляризуемостью и малой анодной, т. е. для смещения потенциала системы до потенциала защиты фз нужны относительно небольшие токи. Во всех случаях электрохимическая защита эффективна в средах с достаточно высокой электропроводностью. Как правило, ее широко применяют для защиты от коррозии в морской воде, в почвах, в грунтовых водах и т. п.  [c.141]


Изложены общие сведения об истории и динамике развития проблемы защиты металлов от коррозии. Показано технико-экономическое значение защиты металлов от коррозии как одной из важнейших народнохозяйственных проблем. Рассмотрены основные виды коррозионных разрушений и проанализированы их причины. Описаны физико-химическая природа и современная электрохимическая теория коррозионных процессов, их зависимость от внешних условий и свойств металла. СТРИЖЕВСКИЙ И.В. Подземная коррозия и методы защиты. — М. Металлургия, 1986, 6 л. — (Защита металлов от коррозии)  [c.208]

Подготовленная к печати глава Технология покрытий", включающая гальванические покрытия, металлизацию (покрытие распылением), диффузионный и горячий способы покрытий, неметаллические покрытия на органической и неорганической основе, защиту металлов от коррозии смазками, оксидирование, химическое окрашивание, фосфатирование, химическую и электрохимическую очистку, не могла быть помещена в т. 7 вследствие нецелесообразности дальнейшего уве-  [c.724]

Наряду с этим имеются покрытия, которые по отношению к металлу защищаемого изделия имеют отрицательный потенциал. В этом случае достигается электрохимическая защита изделий от коррозии. Такие покрытия называются анодными. Очевидно, что покрытия, защищающие сталь только механически, должны иметь достаточную толщину, не иметь на своей поверхности пор, рисок, царапин и других дефектов.  [c.120]

Для защиты металлов от коррозии применяют электрохимическую защиту, защитные покрытия, обработку коррозионной среды и специальные антикоррозионные сплавы и металлы, устойчивые- в данной среде.  [c.60]

Отрицательный защитный эффект ограничивает возможности применения катодной электрохимической защиты металлов от коррозии, если металлы находятся в пассивном состоянии. С другой стороны, из рис. 216 следует, что катодная поляризация пере-пассивированного металла до значений потенциала между l nepen  [c.320]

Электрохимическая защита металлов от коррозии основана на уменьшении скорости коррозии металлических конструкций вутём их катодной и анодной поляризации. Наиболее распространена так называемая катодная защита металла, которая мсшет осуществляться присоединением защищаемой металлической конструкции к отрицательному полюсу внешнего источника постоянного тока или к металлу, имеющему более отрицательный потенциал (протекторная. защита).  [c.36]

Рискин И. В. Принципы электрохимической защиты металлов от коррозии внешним током в электрохимических производотщх// 1У Международная научно-техн. конференция по проблеме СЭВ "Разработка мер защиты от коррозии". Докл. НРБ. Варна. 1985. С.278-282.  [c.52]

Электрохимическая защита металла от коррозии осуществляется путем поляризации (изменения потенциала электрода в результате протекання тока) от внешнего источника или путем соединения с протектором.  [c.42]

С помощью катодного протектора может быть осуществлена электрохимическая защита металла от коррозии, оптеобного пассивироваться анодной поляризацией, осуществляемой путем соединения с металлом, имеющим более положительный потенциал.  [c.42]

Приведены основные сведения по творив химической и электрохимической коррозии металлов. Дана краткая оценка коррозионной стойкости конструкционных материалов в различных условиях, рассмотрены принципы основных видов защиты металлов от коррозии, технология производства некоторых видов антикоррозионных работ и ремонта обо дования.  [c.2]

Приведены теоретические сведения о коррозии и коррозионно-усталостном разрушении металлов, дан анализ современных методов и средств изучения коррозионной усталости. Показано влияние на сопротивление коррозионной усталости металлов и сплавов их структуры, агрессивности среды, масштабного фактора, частоты припожения механической нагрузки и других факторов. Описаны закономерности коррозионно-усталостного разрушения сталей, подвергнутых упрочняющим поверхностным обработкам. Рассмотрены вопросы электрохимической защиты металлов от коррозионно-усталостного разрушения.  [c.2]

Исследования по эксплуатации деталей машин показывают, что с повышением класса чистоты поверхности коррозионная стойкость повышается. Это объясняется тем, что корродируюшие вещества при химической коррозии собираются на дне впадины гребешков и образуют очаги коррозии. Чем меньше глубина впадин, тем меньше условий для образования очагов коррозии и разрушения поверхности металла. При электрохимической коррозии в первую очередь разрушаются гребешки. Поэтому с уменьшением шероховатости разрушение поверхности уменьшается. Кроме того, пассивирующие пленки, более устойчивые на гладкой поверхности, также защитят металл от коррозии. С увеличением наклепа и остаточных напряжений в поверхностном слое уменьшается коррозионная стойкость деталей. Коррозионная стойкость снижается также с увеличением упругих деформаций, возникающих при нагрузках в процессе эксплуатации машин. Это объясняется тем, что первичная защитная пленка на деформированном металле менее прочна, чем основной металл, и легко разрушается от влияния внутренних напряжений в металле. Для увеличения коррозионной стойкости необходимо повышать чистоту поверхности деталей, уменьшать наклеп и остаточные напряжения в поверхностном слое.  [c.408]


Электрохимическая защита яеталла от коррозии осуществляется наложением электрического тока от внешнего источника или соедине-нием с металлом (протектором), имеющим больший отрица ьный (катодная защита) или больший положительный (анодная защита) потенциал, чем защищаемый металл.  [c.60]

Как известно, для защиты металла от коррозии при отсутствии напряжений успешно применяется электрохимическая защита. Она производится с помощью протектора, изготовленного из значительно менее благородного металла, т. е. имеющего значительно более отрицательный электродный потенциал, чем металл защищаемого объекта или анодных покрытий (см. VI—8), или при помощи катодной поляризации защищаемого объекта от внешнего источника тока. Благодаря электрохимической защите местные коррозионные пары на металле должны перестать работать и весь защищаемый объект должен сделаться катодным. Основы электрохимической защиты разработаны и описаны Г. В. Акимовым [1, 2] и Н. Д. Томашевым [151].  [c.179]

В книге содержатся теоретические и инженерные сведения об исполь зовании искусственно наведенной пассивности в практике защиты металлов от коррозии. Изложены общие представления об анодной защите металлов, коррозионно-электрохимическом поведении углеродистой и нержавеющих сталей, титана и анодной защите их в различных электропроводящих средах. Большое внимание уделено аппаратурному оформлению метода като дам, электродам сравнения, средствам регулирования и контроля потенциала, автоматическим системам. Описан новый вариаит защиты — анодная защита с дополнительным катодным протектором. Приведены примеры промышленного применения анодной защиты, показаны эффективность и экономичность этого вида зашиты.  [c.2]


Смотреть страницы где упоминается термин Электрохимическая защита металлов от коррозии : [c.16]    [c.2]    [c.427]    [c.49]    [c.44]    [c.309]    [c.35]    [c.269]    [c.178]   
Чугун, сталь и твердые сплавы (1959) -- [ c.323 ]



ПОИСК



Задачи расчета электрохимической коррозии и защиты металлов

Защита металлов

Защита металлов от коррозии

Защита электрохимическая от коррозии

Коррозия металлов

МЕТОДЫ ЗАЩИТЫ ОТ КОРРОЗИИ Электрохимическая защита металлов

Металлы электрохимическая

Методы защиты металлов от электрохимической коррозии

ПРОМЫШЛЕННОЕ ПРИМЕНЕНИЕ АНОДНОЙ ЭЛЕКТРОХИМИЧЕСКОЙ ЗАЩИТЫ МЕТАЛЛОВ ОТ КОРРОЗИИ

Приближенный расчет суммарных токов при электрохимической коррозии и защите металлов

Электрохимическая гетерогенность и защита от коррозии деформируемого металла и сооружений

Электрохимическая защита

Электрохимическая защита от коррозии от коррозии

Электрохимическая коррози

Электрохимическая коррозия

Электрохимический

Электрохимический метод защиты металлов Фокин, В. А. Тимонин. Защита титана от коррозии в концентрированных растворах соляной кислоты прц повышенных температурах



© 2025 Mash-xxl.info Реклама на сайте