Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Методы защиты металлов от электрохимической коррозии

Установление характера кинетики основных контролирующих стадий коррозионного процесса в данных условиях позволяет обоснованно выбирать наиболее эффективные для данного случая методы борьбы с коррозией. Помимо повышения термодинамической стабильности коррозионной системы существует большое количество разнообразных методов защиты металлов от электрохимической коррозии. Их можно разделить на следующие виды.  [c.45]

МЕТОДЫ ЗАЩИТЫ МЕТАЛЛОВ ОТ ЭЛЕКТРОХИМИЧЕСКОЙ КОРРОЗИИ  [c.193]


Существует большое количество разнообразных методов защиты металлов от электрохимической коррозии. Их можно подразделить на следующие виды  [c.193]

С научной точки зрения разбор и классификацию всех существующих разнообразных методов защиты металлов от электрохимической коррозии можно осуществить не на основе условий их применения или технологии осуществления, как это сделано выше, а на базе приложения теории электрохимической коррозии. Для этой цели необходимо правильно выявить механизм защитного действия каждого метода защиты, т. е установить на какую ступень в цепи последовательных процессов электрохимического растворения металла данный метод оказывает основное торможение.  [c.194]

Исходя из механизма защитного действия, методы защиты металлов от электрохимической коррозии можно разделить на следующие  [c.194]

В настоящем разделе приведено 12 работ, полностью посвященных ознакомлению студентов с осуществлением и исследованием эффективности различных методов защиты металлов от электрохимической коррозии металлические покрытия, горячие и электролитические (работы № 23—27), фосфатирование и оксидирование (работы № 28—30), лакокрасочные покрытия (работа Хо 34), а также электрохимические методы защиты (работы № 31 и 32) и применение ингибиторов коррозии (работа № 33). Легирование как метод повышения кислотостойкости сплава рассмотрено в части II настоящего руководства (работа № 14).  [c.196]

Жук Н. П. Методы защиты металлов от электрохимической коррозии, МИСС, 1962.  [c.285]

Существует много разнообразных методов защиты металлов от электрохимической коррозии  [c.28]

Построение поляризационных и потенциостатических кривых дает возможность широко использовать эти методы на практике с целью защиты металла от электрохимической коррозии [25].  [c.21]

Для защиты металлов от электрохимической коррозии применяют следующие основные методы  [c.311]

С современных позиций рассмотрено электрохимическое поведение металлов под адсорбционными и фазовыми слоями электролитов. Приведено большое количество экспериментальных данных о влиянии внешних условий на развитие коррозии металлов. На основе физико-математических моделей рассмотрена возможность использования ускоренных лабораторных испытаний для прогнозирования коррозионного поведения металлов в различных климатических зонах. Дана оценка эффективности современных средств и методов защиты металлов от коррозии.  [c.2]


Многочисленные известные, а также все вновь появляющиеся методы защиты металлов от коррозии могут быть рассмотрены на основе характера оказываемого ими торможения на ту или иную стадию электрохимической коррозии или изменения ими степени термодинамической нестабильности системы. В этом случае в соответствии с основным выражением электрохимической коррозии (1) методы защиты металлов можно классифицировать следующим образом (см. табл. 2). В качестве способов защиты находят практическое применение как методы, базирующиеся на уменьшении степени термодинамической нестабильности, так и методы, основанные на торможении кинетики катодных и анодных процессов, и в несколько меньшей степени — методы, действие которых обусловлено увеличением общего омического сопротивления коррозионной системы.  [c.10]

Рациональная классификация методов защиты металлов от коррозии на базе электрохимической теории  [c.11]

В зависимости от характера агрессивной среды применяются различные методы защиты металлов от коррозии. К ним относятся, в основном, следующие 1) пассивирование поверхности, т. е. создание на поверхности изделия окисной пленки 2) электрохимическая зашита (протекторная или электротоком), при которой защищаемое изделие становится катодом и не корродирует 3) обработка агрессивной среды для снижения ее активности путем введения ингибиторов (замедлителей) или веществ, химически связывающих активатор коррозии, например кислород в воде и нейтральных водных растворах 4) покрытие поверхности неметаллическими химически устойчивыми материалами лаками, красками, эмалями, резиной, пластмассами и т. п. 5) нанесение на поверхность изделий металлических покрытий 6) применение летучих ингибиторов и других средств.  [c.54]

Для защиты металлов от питтинговой коррозии применяют электрохимические методы зашиты, ингибиторы коррозии, рационально легированные сплавы (хромоникелевые стали, легированные молибденом, кремнием). Наибольшую коррозионную стойкость в средах с большим содержанием иона хлора имеет титан.  [c.40]

Защита металлов от контактной коррозии осуществляется правильным подбором контактирующих металлов, использованием изолирующих прокладок, применением электрохимических методов защиты, введением ингибиторов коррозии.  [c.42]

ЭЛЕКТРОХИМИЧЕСКИЙ МЕТОД ЗАЩИТЫ МЕТАЛЛОВ ОТ КОРРОЗИИ  [c.1]

Разрушение оборудования из металлов и сплавов можно резко снизить усовершенствованием и разработкой методов защиты аппаратуры от коррозии. В настоящее время особое внимание уделяется разработке новых видов металлических и неметаллических покрытий, ингибиторов, усовершенствованию электрохимической защиты. Среди множества методов защиты металлов от коррозии самым распространенным является нанесение различных защитных металлических и неметаллических покрытий. Для защиты от коррозии черных металлов широко применяют цинковые покрытия, примерно 70% производства цинка расходуется для этих целей. Сложность и многообразие условий воздействия внешней среды, а также большое разнообразие применяемых конструкционных материалов постоянно требуют расширения номенклатуры гальванических покрытий металлами и сплавами с определенными заданными свойствами.  [c.8]

Наиболее эффективным методом защиты металлов от коррозии обычно является метод, который преимущественно тормозит основную контролирующую стадию данного электрохимического коррозионного про-  [c.195]

Методы защиты металлов от коррозии весьма разнообразны. Их можно разделить на следующие группы 1) обработка среды, в которой протекает коррозия, 2) электрохимическая защита, 3) защитное покрытие.  [c.109]

Проверка методов защиты металлов от коррозии определение эффективности противокоррозионного легирования, применения замедлителей коррозии или электрохимической защиты, проверка надежности защитных покрытий и пр.  [c.359]


Курс состоит из трех основных частей химическая коррозия, электрохимическая коррозия и методы защиты металлов от коррозии. Кроме того, большое внимание уделено термодинамике, кинетике и механизмам электродных реакций на металлах, а также локальным коррозионным процессам. Основные научные положения проиллюстрированы па конкретных видах коррозии и способах защиты от пее.  [c.7]

В технике защиты от коррозии широко применяются неорганические покрытия, состоящие из оксидов, фосфатов, фторидов и других неорганических соединений. Неорганические покрытия получают химическими и электрохимическими методами оксидированием, хроматнрованием, фосфатированием, анодированием. К неорганическим покрытиям относятся эмали, которые применяются в бытовой технике и для защиты металлов от газовой коррозии при высоких температурах. Сравнительно недавно начал применяться электрофоретический метод нанесения покрытий.  [c.50]

При защите металлов от коррозии наиболее эффективен метод, который тормозит основную контролирующую стадию данного электрохимического процесса, т. е. когда основной фактор защиты данного метода совпадает с контролирующим фактором данного коррозионного процесса. При одновременном применении нескольких методов защиты металла от коррозии, как привило, легче достичь более полной защиты, если все эти методы действуют преимущественно на основную контролирующую стадию электрохимического коррозионного процесса. Например, при уменьшении коррозии металла добавлением анодных ингибиторов (пассиваторов) усиление эффекта защиты достигается также введением катодных присадок в сплав или дополнительной анодной поляризацией, т. е. рядом методов, тормозящих анодный процесс. Наоборот, одновременное применение нескольких методов, действующих на различные контролирующие стадии электрохимической коррозии, будет, как правило, менее эффективным, а иногда и вредным. Например, если ограничение коррозии металла достигнуто методами, тормозящими анодный процесс (легирование стали хромом, добавкой окислителей или анодных ингибиторов в раствор), то нерационально одновременно применять методы, тормозящие катодный процесс (устранение катодных включений в сплаве, уменьше-  [c.48]

В руководстве даны 34 работы, экспериментально иллюстрирующие такие важные разделы курса, как газовая коррозия и жаростойкость металлов, механизм процессов электрохимической коррозии (электродные потенциалы, электрохимическая гетерогенность, поляризация и деполяризация, явление пассивности), наиболее интересные и важные случаи электрохимической коррозии (контактная коррозия, устойчивость в кислотах, подземная и атмосферная коррозия, межкристаллитная и точечная коррозия, коррозия сварных соединений, коррозионное растрескивание и усталость), различные методы защиты металлов от коррозии (защитные покрытия, электрохимическая защита, применение замедлителей). Во введении авторы сочли необходи.мым более детально остановиться на принятых современных методах обработки и оформления результатов экспериментальных исследований (ведение отчета, оценка точности измерений и основные приемы графического анализа опытных данных). При недостаточном бюджете времени или других затруднениях требование оценки точности измерений может быть опущено. Здесь также кратко указаны сведения о работе с некоторыми наиболее часто встречающимися приборами и аппаратами коррозионной лаборатории, а также сведения о мерах безопасности при проведении лабораторных работ. В приложении собрано минимальное количество справочных данных, необходимых при выполнении работ коррозионного практикума.  [c.7]

Следует также рассмотреть некоторые теоретические вопросы электрохимического принципа защиты металла от атмосферной коррозии. Анализ потен-циостатической кривой, характеризующей зависимость скорости анодной реакции ионизации металла от потенциала, указывает на то, что имеется довольно широкая область потенциалов, в которой скорость анодного растворения ничтожно мала. При величине стационарного потенциала металла, близкой к зтш значениям, скорость саморастворения резко снизится. В случае применения обычного метода защиты ингибиторами пот(знциал полной пассивации создается при вводе в электролит пассивирующих анионов, сильно тормозящих анодную реакцию ионизации металла.  [c.7]


Смотреть страницы где упоминается термин Методы защиты металлов от электрохимической коррозии : [c.46]    [c.356]    [c.427]    [c.88]    [c.196]    [c.4]    [c.214]    [c.293]    [c.269]    [c.178]   
Смотреть главы в:

Лабораторные работы по коррозии и защите металлов Издание 2  -> Методы защиты металлов от электрохимической коррозии

Защита металлов от коррозии  -> Методы защиты металлов от электрохимической коррозии



ПОИСК



ЗАЩИТА ОТ КОРРОЗИИ Методы защиты металлов от коррозии

Защита металлов

Защита металлов от коррозии

Защита электрохимическая от коррозии

Коррозия металлов

Коррозия методы защиты

МЕТОДЫ ЗАЩИТЫ ОТ КОРРОЗИИ Электрохимическая защита металлов

МЕТОДЫ ЗАЩИТЫ ОТ КОРРОЗИИ Электрохимическая защита металлов

Металлы электрохимическая

Методы защиты

Методы защиты металлов от коррозии

Электрохимическая защита

Электрохимическая защита металлов от коррозии

Электрохимическая защита от коррозии от коррозии

Электрохимическая коррози

Электрохимическая коррозия

Электрохимические методы

Электрохимический

Электрохимический метод защиты

Электрохимический метод защиты металлов Фокин, В. А. Тимонин. Защита титана от коррозии в концентрированных растворах соляной кислоты прц повышенных температурах



© 2025 Mash-xxl.info Реклама на сайте