Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Симметричные волчки (молекулы) моменты инерции и вращательные постоянные

Моменты инерции молекулы ЗОг/ь и /,с мало отличаются друг от друга, поэтому ее можно рассматривать как симметричный волчок. Молекула имеет постоянный дипольный момент 1,61 Д [16]. Электронный спектр поглощения ЗОг расположен в ультрафиолетовой области, чисто вращательный — в далекой инфракрасной.  [c.16]

Исследование вращательных комбинационных и инфракрасных спектров аммиака (см. г.ч. I) показало, что молекула NH,, является симметричным волчком, обладающим постоянным электрическим дипольным моментом. Наиболее простое объяснение этого экспериментального факта состоит в предположении, что молекула аммиака образует пирамиду с атомом азота в вершине. Однако возможны и другие предположения. Хотя результаты исследования вращательного инфракрасного спектра совершенно исключают возможность плоской симметричной структуры (точечная группа D,/,, см. фиг. 1, S), так как такая структура не обладает дипольным моментом, но они не исключают несимметричную структуру, при которой молекула имеет два равных или почти равных момента инерции (например, плоскую несимметричную модель с симметрией или пирамидальную несимметричную модель с симметрией С ). Однако в этом случае молекула должна была бы иметь шесть основных частот, в то время как при предположении о симметричной пирамидальной структуре (точечная группа Сз,,) получаются только четыре частоты две полностью симметричные Ai и две дважды вырожденные Е (см. табл. 36). На основе последнего предположения может быть дано удовлетворительное истолкование большого числа полос в обычной и фотографической областях инфракрасного спектра, а также линий комбинационного спектра. Не имеется никаких данных о  [c.318]


Как мы видели ранее, если для перпендикулярного колебания (тип симметрии П) Б линейной молекуле возбужден один квант, то в качестве двух составляющих движения мы можем выбрать либо а) колебания в двух взаимно перпендикулярных плоскостях, либо б) круговые колебания по часовой стрелке и против часовой стрелки вокруг оси симметрии (см. фиг. 27, а) с моментами количества движения 1== . Если в первом случае молекула вращается, то при колебании в плоскости aJ, параллельной оси вращения, не будет происходить изменения момента инерции молекулы, пока колебания являются гармоническими, так как ядра движутся параллельно оси вращения. Однако для колебания, совершающегося в плоскости а -, перпендикулярной оси вращения, момент инерции относительно оси будет изменяться, так как он слагается из начального момента инерции и момента инерции относительно оси симметрии молекулы (который для смещенной конфигурации молекулы не равен нулю). Таким образом, для двух составляющих колебаний следует ожидать несколько отличающихся между собой эффективных значений постоянной В. Если применять схему б), то при колебании атомов вокруг оси симметрии мы получим по существу такую же картину, как и для молекулы со слегка изогнутой равновесной конфигурацией, т. е. мы получим слегка асимметричный волчок, для которого снято вырождение уровней с характерное для соответствующего симметричного волчка, причем расщепление этих уровней увеличивается с увеличением вращательного квантового числа J (см. фиг. 18). В данном случае К идентично I. Таким образом, согласно любой из схем, а) или б), мы должны ожидать удвоения на основании того, что при смещении атомов молекула становится слегка асимметричным волчком.  [c.406]

Невозмущенные уровни энергии. Как и следовало ожидать по аналогии с линейными молекулами или молекулами, являющимися симметричными и сферическими волчками, хорошим приближением к энергии колеблющейся и одновременно вращающейся молекулы является сумма чисто колебательной (см. гл. II) и вращательной энергии (см. гл. I), вычисленной при эффективных значениях вращательных постоянных (моментов инерции), т. е.  [c.489]

Невырожденные колебательные состояния. Как мы видели, в нулевом приближении энергия симметричного волчка, колеблющегося и вращающегося, равна просто сумме колебательной и вращательной энергии (1,20) жесткого, симметричного волчка. В более высоком приближении мы должны учитывать, что во время колебания периодически меняются оба момента инерции в и /д. В первом приближении (точно так же, как и в случае линейных молекул) можно применять формулы для жесткого симметричного волчка, беря в качестве вращательных постоянных В н А средние значения и Л[ ] за время колебания, которые, вообще говоря, отличаются от равновесных значений Ве — к/8 к с1ве и Ag — h/S K lAe. Как и в случае линейных молекул, мы предполагаем, что справедливы следующие соотношения  [c.428]


Изложенные выше соображения применимы как к случаю молекулы, являющейся симметричным волчком в силу своей симметрии (как, например, молекулы КНз и молекулы галоидозамещенных метана), так и к случаю несимметричной молекулы, для которой два главных момента инерции случайно равны друг другу. Сильвер и Шефер [790] и Шефер [776] с помощью квантовой механики более строго доказали справедливость формул (4,38) и (4,39) для плоских и пирамидальных молекул ХУд. То же самое было выполнено Шефером [777] для случая молекул типа Х 2д с аксиальной симметрией и Нильсеном [666] — для общего случая. Эти авторы также дали точные формулы для и а , выраженные через потенциальные постоянные и геометрические параметры молекулы. Аналогично случаю линейных молекул, постоянные а,- слагаются из трех частей гармонической, ангармонической и части, обусловленной кориолисовым взаимодействием [см. уравнение (4,12)]. Сильвер, Шефер и Нильсен также наи ли, что в правые части выражений (4,38—39) необходимо добавить постоянные члены — и —а . Однако эти члены имеют тот же порядок величины, что и вращательные постоянные йу и поэтому практически ими можно всегда пренебречь ).  [c.429]

Анализ инфракрасных полос, моменты инерции и междуатомные расстояния симметричных волчков. Если в параллельной полосе не разрешена тонкая структура К (т. е. при совпадении всех подполос), полоса имеет в основном ту же структуру, что и перпендикулярная полоса линейной молекулы, и мы можем найти значения вращательных постоянных В и В" таким же способом, как и ранее, а именно из комбинационных разностей (]) = = R J) — P J) и J) = R J— ) — P J- - ) соответственно (см. стр. 419). Применяя этот способ к параллельным полосам, воспроизведенным на фиг. 123 и 124, мы получаем постоянные В 1 наряду с другими величинами, собранными в приводимой ниже табл. 132. Разумеется, разность А,Р" ), полученная иэ различных параллельных полос одной и той же молекулы, должна быть одинаковой при каждом из значений У, если нижнее состояние является общим. Помимо этого, сумма частот двух последовательных линий в чисто вращательном спектре также должна быть точно равна соответствующему значеник> разности во вращательно-колебательном спектре  [c.462]

Было подробно изучено несколько случаев перпендику,тярных полос молекул типа слегка асимметричного волчка. В частности, хорошим примером может служить перпендикулярная полоса радикала HN N, фотография которой приводится на фиг. 108. В данном случае вращательные постоянные верхнего п нижнего состояний почти одинаковы. По этой причине, а также из-за очень малой асимметрии молекулы полоса очень похожа по своей структуре на схематический спектр симметричного волчка, приведенный на фиг. 99 наблюдается ряд почти эквидистантных ( -ветвей, похожих по внешнему виду на отдельные линии. Между ними имеется тонкая структура, обусловленная Р- и 2 -ветвями. Эти полосы поглощения являются типичными перпендикулярными полосами, в точности подобными перпендикулярным инфракрасным полосам. Очень большое расстояние между -ветвями АО см ) и уменьшение этого расстояния в два раза в случае дейтерировапного соединения говорит о том, что небольшая величина момента инерции /4 обусловлена почти исключительно атомом Н. В соответствии с этим следует предположить, что атом Н находится вне оси линейной группы N N. Применение приборов с более высоким разрешением позволило довольно полно разрешить некоторые подполосы и определить описанным выше способом все три вращательные  [c.258]


Смотреть страницы где упоминается термин Симметричные волчки (молекулы) моменты инерции и вращательные постоянные : [c.352]    [c.55]    [c.615]   
Колебательные и вращательные спектры многоатомных молекул (1949) -- [ c.36 , c.37 , c.38 , c.47 , c.428 , c.462 , c.464 , c.472 ]



ПОИСК



274, 323—327 симметричный

Волосевич

Волчков

Волчок

Волчок симметричный

Вращательные постоянные

Вращательные симметричных волчков

Вращательный симметричного волчка

Ле, Л[0], Ару Врр >Э 0 Вру симметричных волчков

Молекулы момент инерции

Момент вращательный

Момент инерции

Моменты инерции симметричных волчков

С3г и Симметричные волчки) момент инерции

Симметричные волчки (молекулы)



© 2025 Mash-xxl.info Реклама на сайте