Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Симметричные волчки) колебательный момент количества движения

Главные полосы изогнуто-линейных переходов. Если молекула нелинейна в возбужденном состоянии, то она, разумеется, относится к типу асимметричного волчка. Поэтому нужно рассмотреть переходы между уровнями асимметричного волчка и вращательными уровнями линейной молекулы. Рассмотрим сначала случай, когда молекула в возбужденном состоянии близка к вытянутому симметричному волчку (хотя, строго говоря, она является асимметричным волчком) и когда вполне определено квантовое число К момента количества движения относительно оси фигуры. В этом случае положение вращательных уровней может быть описано формулой (1,146) для почти симметричного волчка. В нижнем состоянии квантовое число К определяется только электронным и колебательным моментами количества движения, т. е. " = " А" , и если в основном состоянии Л = О, то К" = Г.  [c.193]


Согласно квантовой механике, составляющая полного момента количества движения по оси любого симметричного волчка равняется целому (или, при нечетном числе электронов, полуцелому) кратному величины Л/2тг. Так как колебательный момент С,- в общем случае не равен целому кратному Л/2тг, то отсюда следует, что и чисто вращательный момент относительно оси волчка также не равен целому кратному /г/2тг однако сумма обоих моментов имеет целочисленное значение (=Л Л/2тс).  [c.431]

Однако для трижды вырожденных колебательных состояний кориолисово взаимодействие вызывает расщепление. Это легче всего обнаружить, если рассмотреть колебание молекулы ХУ4, приведенное на фиг. 41. Если вращение происходит вокруг оси 2 и возбуждена составляющая то силы Кориолиса стремятся возбудить составляющую и не действуют на составляющую 7з(,. Ввиду этого в данном случае происходит расщепление на три компоненты, причем одна из них сохраняет первоначальное значение частоты. Так же как и для симметричного волчка, два других колебания являются такими линейными комбинациями первоначальных колебаний и зе> которые под действием сил Кориолиса уже не стремятся переходить друг в друга. Как и прежде, эти две линейные комбинации образуют два круговых колебания (по часовой стрелке и против нее) с моментами количества движения р. В действительности, силы, действующие на ядра У, не одинаковы во всех направлениях, движение отличается от кругового и является эллиптическим. Момент р параллелен или антипараллелен полному моменту количества движения.  [c.475]

Молекулы с длинными цепями 217 Момент количества движения 75, 85,151,163 Момент количества движения, полный, / асимметричных волчков 55, 56, 57 линейных молекул 27 симметричных волчков 35, 38 Момент перехода 44, 274, 443, 451 Моменты инерции 25 асимметричных волчков 57, 517 влияние на колебательный изотопический эффект 251, 257 влияние на термодинамические функции 536, 540, 552 главные 25  [c.616]

Если молекула находится в вырожденном колебательном состоянии (П, А,...), то имеется колебательный момент количества движения 1 к12т ) (/=1, 2,...) относительно оси молекулы, и в этом случае, точно так же как и в случае двухатомных молекул (см. Молекулярные спектры I, гл. III, 2), необходимо применять формулу для энергии симметричного волчка. Следовательно, с точностью до постоянного слагаемого мы имеем формулу  [c.399]


Переходы Е — А,. Если верхнее состояние комбинационной полосы тетраэдрической молекулы является дважды вырожденным, то могут появляться все пять ветвей, определенные условиями (4,88). В подобном случае можно ожидать, что структура полосы будет очень схожа со структурой полносимметричной комбинационной полосы симметричного волчка. Различие должно проявляться лишь в распределении интенсив-иостей линий, которое будет менее закономерным. До сих пор ни одна из таких полос не была наблюдена экспериментально. Так как ири колебании (е) не имеется колебательного момента количества движения, то расстояние между последовательными линиями Р, R и О, S ветвей должно равняться 2В и 46 соответственно. Вращательные линии в спектрах Hj, S1H4 и GeHj при более высоких значениях J должны расщепляться вследствие кориолисова взаимодействия с близким по частоте колебанием V4(/s).  [c.487]

При практических вычислениях влияния кориолисова взаимодействия на уровни энергии необходимо, так же как и для линейных молекул, составить выражения для колебательных моментов количества движения р , pv н p для различных пар нормальных колебаний, взаимодействующих друг с другом (уравнение (4,10)]. например (vi, Vj) и (va, V3) в случае нелинейной молекулы ХУа, и затем подставить их в оператор Гамильтона общего вида (2,276) (см. Вильсон [935] и Ян [470]). Такие расчеты были выполнены Нильсеном [664] для трех колебаний, v, v -, и ve, молекулы Dj O (см. выше). В этом случае все формулы значительно упрощаются, так как молекула близка к симметричному волчку.  [c.497]

В случае перпендикулярных полос каждая подполоса также будет состоять из нескольких подполос, по две на каждое значение нижнего состояния (так как Д/Г( = 1). Ввиду того Что для молекул типа СаН8 доля энергии, определяемая внутренним вращением, согласно (4,118), равна АК , структура подполосы (с заданным значением К и ДЛ") вполне подобна структуре полной перпендикулярной полосы при отсутствии свободного вращения (фиг. 128). Разница состоит только в том, что расстояние между ветвями Q, вырожденными в линии, равно 2А, а не 2 (Л — В). Действительно, как мы видели раньше (стр. 457), интервал между подполосами равен 2Л(1—С,) — 23 в силу взаимодействия составляющих вдоль оси волчка вращательного и колебательного моментов количества движения. Точно так же, согласно Говарду (см. выше), расстояние между подполосами в силу взаимодействия внутренних вращательного и колебательного моментов количества движения (если, как это часто бывает, верхнее состояние типа симметрии Е случайно совпадает с одним из состояний типа симметрии Е") равно 2Л(1—С,). Таким образом, в перпендикулярной полосе молекулы, являющейся симметричным волчком и обладающей свободным внутренним вращением, каждая из вырожденных в линии ветвей Q фиг. 128 будет расщеплена на ряд почти равноотстоящих линий с интервалом 2В (пренебрегая зависимостью Л и й от к). Такая структура полос до сих пор не обнаружена.  [c.528]

Здесь точно так же, как в случае молекул типа симметричного волчка, С обозначает либо чисто колебательный момент количества движения (когда электронное состояние не вырождено), либо чисто электронный момент количества движения (когда электронное состояние вырождено, но выро-  [c.104]

Вращательные уровни для вырожденных колебательных уровней невырожденных синглетных электронных состояний. В вырожденных колебательных состояниях (которые существуют для всех молекул, действительно относящихся к типу симметричного волчка) при вращении молекулы корио-лисовы силы приводят к снятию вырождения (Теллер и Тиса [1198) и Теллер [11961), причем расщепление уровней в первом приближении возрастает линейно с увеличением квантового числа К (см. [23], стр. 429). Это расщепление обусловлено тем, что момент количества движения относительно оси волчка Khl2n представляет собой сумму вращательного и колебательного членов. Последний равен /i/2n (см. стр. 67), и поэтому вращательный член равен К ) hl2n, где знак минус ставится, когда колебательный момент параллелен вектору К, а знак плюс — когда он антинараллелеп. Поэтому в формулах вращательной энергии (1,102) и (1,106) надо заменить АК на А (К и СК на С К ц- соответственно. Эта замена означает, что к уравнению (1,102) для вытянутого волчка надо прибавить член  [c.87]


Если бы не было эффектов более высокого порядка, уровни Ai и А2 при данных J ж К имели бы одинаковую энергию точно так же, как две компоненты уровней с данным J в электронно-колебательном состоянии П линейной молекулы. Когда возбуждено вырожденное колебание v , из-за кориолисова взаимодействия или просто из-за колебательно-вращательного взаимодействия возникает расщепление уровней на две компоненты, которое называется -удвоением, несмотря на то что в молекулах типа симметричного волчка в отличие от линейных молекул момент количества движения (колебательный) равен не (hl2n), а Сг h 2n) (см. стр. 67). Гаринг, Нильсен и Pao [406] показали, что точно так же, как в линейных молекулах, при А = 1 удвоение в первом хорошем приближении равно  [c.97]


Смотреть страницы где упоминается термин Симметричные волчки) колебательный момент количества движения : [c.615]    [c.619]    [c.761]   
Колебательные и вращательные спектры многоатомных молекул (1949) -- [ c.430 ]



ПОИСК



274, 323—327 симметричный

Волосевич

Волчков

Волчок

Волчок симметричный

Движение волчка

Движение колебательное

Движение симметричное

Колебательные

Колебательный момент количества движения (см. также симметричных волчков

Количество движения

Ле, Л[0], Ару Врр >Э 0 Вру симметричных волчков

Момент количеств движения

Момент количества движени

Момент количества движения волчка



© 2025 Mash-xxl.info Реклама на сайте