Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Мгновенная ось вращения симметричных волчков

Рассмотренную только что форму движения симметричного волчка можно было бы описать короче (хотя, быть может, менее наглядно). Для этого через конец вектора N момента импульса проводим перпендикулярно к нему неизменяемую плоскость i (ср. стр. 99) и строим эллипсоид кинетической энергии с центром в начале вектора N, подобный эллипсоиду инерции и касающийся плоскости Е. Точка касания является концом вектора угловой скорости вращения и). Мгновенное движение волчка состоит во вращении этого эллипсоида вокруг и). При этом эллипсоид катится без скольжения по плоскости . Если эллипсоид обладает симметрией вращения, то кривая качения будет окружностью, описанной вокруг вектора N поэтому конус, описанный вектором о , равно как и конус, описанный осью фигуры, будет круговым конусом. Таким образом, мы снова пришли к регулярной прецессии симметричного волчка.  [c.181]


Пусть вектор мгновенной угловой скорости вращения волчка направлен по осп симметрии волчка. Вектор момента количества движения К относительно центра масс волчка определяется распределением скоростей и масс точек системы. В случае симметричного волчка вектор К оказывается направленным по оси симметрии волчка. Точка контакта S, расположенная на ножке волчка, проскальзывает по плоскости. Этому проскальзыванию препятствует сила трения, направленная в сторону, противоположную скорости точки S (рис. 199). На основании теоремы об изменении момента количества движения, момент силы трения Ртр относительно центра тяжести поднимает ось волчка. Этот факт хорошо всем известен из наблюдений. Как бы ни был запущен волчок, при достаточно большой скорости вращения его ось стремится принять вертикальное положение.  [c.338]

Классическое движение. В сферическом волчке, в отличие от симметричного волчка, мгновенная ось вращения всегда совпадает с направлением полного момента количества движения ). Иначе говоря, молекула совершает простое вращение вокруг неподвижной оси, которая может иметь любую ориентацию по отношению к молекуле. Любая ось, связанная с молекулой, может рассматриваться как ось волчка, и она совершает простое вращение вокруг вектора Р. Составляющая вектора Р по любой оси, закрепленной в молекуле, имеет постоянную величину. Согласно (1,19) частота вращения вокруг такой оси волчка равняется нулю. Неподвижный конус, который рассматривался при изучении движения симметричного волчка (фиг. 7), вырождается в прямую.  [c.51]

Какое тело называют симметричным волчком Докажите, что при свободном вращении симметричного волчка вокруг оси, не совпадающей ни с одной его свободной осью, геометрическая ось волчка описывает конус (нутация оси). Как при этом движется мгновенная ось Оцените частоту иутации. Поясните нутацию оси Земли н оцените ее частоту.  [c.254]

Магнитное квантовое число 38 Магнитный дипольный момент 259 Матрица дипольного момента 271 индуцированного дипольного момента 275 Матричные элементы составляющих тензора полиризуемости 275. 279, 288, 291, 469 функции возмущения 234, 237 электрического дипольного момента 44, 71, 274, 288, 443 Мгновенная ось вращения асимметричных волчков 57 симметричных волчков 36 сферических иолчков 51 Междуатомные расстояния асимметричных волчков 519 изотопических молекул 424.466 линейных молекул 34, 192, 423 симметричных волчков 428, 466 тетраэдрических молекул 486 Механические модели для решения задачи о колебаниях 176 Миноры векового определителя, определение формы нормального колебания 83,87. 161, 164, 169, 172, 176 Множитель Больцмана 271, 283, 28Э Множитель, обусловленный ядерным спином, во вращательной части статистической суммы 539, 553 Модели молекулы, механические, для изучения колебаний молекулы 78,176 Модель потенциальной поверхности 219 Модификации, не комбинирующие асимметричных волчков 67, 498 влияние на термодинамические функции 538, 544, 553 линейных молекул 29 симметричных волчков 41—43, 444 тетраэдрических молекул 53, 482 Молекулы  [c.604]



Смотреть страницы где упоминается термин Мгновенная ось вращения симметричных волчков : [c.251]    [c.389]   
Колебательные и вращательные спектры многоатомных молекул (1949) -- [ c.36 ]



ПОИСК



274, 323—327 симметричный

Волосевич

Волчков

Волчок

Волчок Вращение

Волчок симметричный

Ле, Л[0], Ару Врр >Э 0 Вру симметричных волчков

Ось вращения мгновенная



© 2025 Mash-xxl.info Реклама на сайте