Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Титан и его сплавы под флюсом

Весьма важной металлургической особенностью сварки титана и его сплавов под флюсом является взаимодействие флюса с металлом, в результате чего возможно восстановление титаном натрия из фтористого натрия, чем, по-видимому, и объясняется измельчение структуры металла шва при сварке под флюсами с фтористым натрием. Фтористый натрий и фтористый кальций могут реагировать с окислами титана. Кроме того, фтористые соединения могут растворять окислы титана.  [c.363]


Титан и его сплавы сваривают на автоматах под специальным флюсом, в камерах с контролируемой атмосферой и электронным лучом.  [c.257]

Титан и его сплавы могут свариваться аргоно-дуговой сваркой, автоматической под слоем флюса, а также стыковой, точечной и шовной контактной сваркой.  [c.527]

Из всех тугоплавких материалов самое щирокое применение в промышленности получил титан и его сплавы. Сварку титана и его сплавов проводят в атмосфере защитных газов с дополнительной газовой защитой корня щва и еще не остывшего участка шва до 400° С. Перед сваркой проволоку подвергают вакуумному отжигу. Для сварки титана больших толщин применяют автоматическую сварку под специальным бескислородным флюсом (АНТ-1 ПНТ-3 и т. д.). Защита обратной стороны осуществляется применением остающейся или флюсомедной подкладки или флюсовой подушки. При этом используют постоянный ток обратной полярности. Кроме того, для сварки титана и его сплавов можно применять и другие способы сварки вакуумно-дуговую, электроннолучевую, диффузионную и т, п.  [c.681]

Титан и его сплавы можно сваривать дуговой в защитных газах, автоматической под слоем флюса и электрошлаковой сваркой. В последнее время применяется сварка электронно-лучевая и сжатой дугой.  [c.417]

Технический титан и его сплавы сваривают автоматической сваркой в среде инертных газов, под флюсом и электрошлаковой сваркой.  [c.205]

Флюсы для сварки титана и его сплавов. Титан и его сплавы обычно сваривают под флюсом или в среде защитного газа. Флюс для сварки титана и его сплавов должен защищать зону сварки от доступа воздуха, а при взаимодействии с титаном не загрязнять его вредными примесями. Положительные результаты в отношении устойчивости процесса сварки, формирования швов, их плотности и химического состава получены при применении бескислородных флюсов, состоящих из наиболее тугоплавких фторидов щелочных и щелочноземельных металлов.  [c.363]

Титан и его сплавы можно сваривать с помощью автоматов под бескислородным тугоплавким флюсом АН-Т на переменном и постоянном токе электродной проволокой из титана.  [c.274]

Технический титан и его низколегированные сплавы удовлетворительно свариваются в защитных инертных газах (аргоне, гелии) неплавящимся вольфрамовым электродом, плавящимся электродом в вакууме или под специальными бескислородными флюсами. Высокая активность титана с газами воздуха приводит при отсутствии защиты расплавленного металла к заметному газонасыщению и снижению пластичности, длительной прочности, коррозионной стойкости сварного соединения и увеличивается склонность к замедленному разрушению. Термический цикл сварки титана существенно отличается от такового при сварке стали потери энергии теплоотводом меньше, а продолжительность пребывания металла околошовной зоны в области высоких температур в два—три раза больше. В процессе сварки происходят сложные фазовые и структурные  [c.237]


Автоматическая сварка титана под флюсом выполняется постоянным током обратной полярности. В отличие от стали титан обладает большим электросопротивлением, поэтому сваривать его необходимо с малым и не меняющимся в процессе сварки вылетом электрода. При диаметре проволоки 2—2,5 мм вылет должен составлять не более 14 мм, при диаметре 3—4 мм—17 мм, а при диаметре 5 мм — 20 мм. При большем вылете проволока перегревается, насыщается азотом и кислородом воздуха, вследствие чего нарушается устойчивость процесса сварки, ухудшается формирование шва и происходит насыщение шва азотом и кислородом воздуха, которые ухудшают механические и коррозионные свойства его. При автоматической сварке титана и его сплавов пользуются специальным мундштуком (рис. 101), чтобы в процессе сварки дуга не прорвалась сквозь слой флюса из-за недостаточной его высоты.  [c.197]

Паять титан и его сплавы низкотемпературными припоями можно также после предварительного покрытия изделий оловом, серебром или медью. Для покрытия оловом подготовленное под пайку изделие быстро опускают на 10—20 мин в нагретое до 700 °С олово. Покрыть титан оловом можно и при помощи флюса, в состав которого входит хлористое олово. Компоненты флюса прогушивают и применяют в мелкоразмолотом ви.де. Изделие покрывают флюсом толщиной до 3 мм и нагревают в печи с нейтральной средой до 350—400 °С.  [c.256]

Для сварки титана и его сплавов применяют дуговую сварку в среде инерт1 ых газов, электронно-лучевую, пла31менную, погруженной дугой, автоматическую под флюсом, электрошлаковую, высокочастотную, контактную (точечную, шовную, рельефную, стыковую), диффузионную, взрывом, прокаткой биметаллов Титан и его сплавы не склонны к образованию кристаллизационных трещин в металле шва. Стойкость к образованию кристаллизационных трещин швов на титановых сйлавах высокая  [c.34]

Реакция серы и фосфора. Оба эти элемента крайне вредны для аустенитных швов, особенно фосфор. Чтобы предотвратить горячие трещины в стабильноаустенитных швах, приходится ограничивать содержание фосфора до 0,01 %. Удаление его из сварочной ванны путем окисления в принципе возможно, но в практике сварки аустенитных сталей не реализуется, так как фосфор обладает сравнительно малым сродством к кислороду. Чтобы окислить фосфор, пришлось бы сначала окислить такие легирующие элементы, как алюминий и титан. Данные об окислении фосфора при сварке под флюсом и электрошлаковой сварке приведены в табл. 17. В этих условиях одной из главных задач металлургии сварки жаропрочных сталей и сплавов является не удаление фосфора из сварочной ванны, а недопущение дополнительного загрязнения ее фосфором. Речь идет о возможном восстановлении  [c.72]

Бор довольно сильно окисляется в условиях дуговой сварки. Так, при сварке открытой дугой проволоками с малыми добавками бора он окисляется почти полностью. Обладая большим сродством к кислороду (см. рис. 15), бор может участвовать в развитии не только кремне- и марганцевовосстановительных процессов, но и восстанавливать титан из шлака, содержащего кислородные соединения титана. Разумеется, речь идет о довольно больших концентрациях бора в сварочной ванне, измеряемых десятыми долями процента. В иных условиях, при наличии в составе флюса довольно больших количеств окислов бора (например, 20%) возможно восстановление бора не только титаном и алюминием, но и хромом, углеродом, кремнием и марганцем. В табл. 19 приведены данные о переходе бора в металл шва из бористого фторидного флюса системы СаРа—В2О3 (АНФ-22). При отсутствии бора в сварочной проволоке и основном металле конечное содержание его в металле шва может достигнуть 0,2—0,3%, а при наличии в шве титана — даже 0,5—0,6%. Это обстоятельство несомненно расширяет возможности сварки под флюсом применительно к жаропрочным сталям и сплавам. Здесь имеется в виду не само по себе легирование металла шва бором через флюс, а возможность предотвращения угара бора при использовании проволоки или стали, легированной бором, в сочетании с бористым плавленым флюсом. 76  [c.76]

Для соединения тугоплавких металлов и их сплавов преимущественно применяют сварку плавлением дуговую в инертных газах (в камерах и со струйной защитой), под бескислородным флюсом (для титана), в вакууме электроннолучевую, лазером. Для некоторЬ1х изделий применяют следующие способы сварки давлением диффузионную в вакууме и защитных газах, взрывом, контактную. По свариваемости и технологии сварки тугоплавкие металлы можно разделить на две группы. К первой группе относятся титан, цирконий, ниобий, ванадий, тантал, ко второй — молибден, вольфрам. Металлы и сплавы первой группы обладают хорошей стойкостью к образованию горячих трещин, но склонны к образованию холодных трещин. Склонность этих металлов к холодным трещинам связана с водородом, который охрупчивает металл в результате гидридного превращения при содержании его выше предельной растворимости. Кроме того, охрупчивание металла происходит также при насыщении кислородом, азотом, углеродом и теплофизическом воздействии сварки, вызывающем перегрев, укрупнение зерна и выпадение хрупких фаз.  [c.500]



Технология электрической сварки металлов и сплавов плавлением (0) -- [ c.663 ]



ПОИСК



Титан

Титан и его сплавы

Титан и его сплавы флюсы для сварки

Титан и сплавы титана

Титанит

Титания

Флюсы

Флюсы для дуговой сварки титана и его сплавов

Флюсы для сварки титана и сплавов на его основе

Флюсы титана и его сплавов — Особенности пайки 115 — Свойства 115 — Составы



© 2025 Mash-xxl.info Реклама на сайте