Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Вариационный принцип при решении уравнения переноса

Представляют несомненный интерес также разработанные сравнительно недавно вариационные принципы решения уравнения переноса излучения (Л. 33, 34], обстоятельный анализ сходимости которых дан в [Л. 33]. В одномерных астрофизических задачах и особенно в задачах нейтронной физики [Л. 30, 327, 328] для решения уравнения переноса с успехом применяется метод сферических гармоник. Аналогичная этому методу идея замены интегро-дифференциального уравнения переноса системой дифференциальных уравнений используется в методе моментов [Л. 35, 331—333].  [c.111]


Обратим теперь внимание на то, что при конечных значениях е первый член в формуле (5А.18) пропорционален функции (5А.4), для которой уравнения (5А.2) служат условиями экстремума. Таким образом до тех пор, пока остается конечным, точное решение уравнений отклика соответствует максимуму производства энтропии при заданных внешних полях. Это напоминает ситуацию в кинетической теории газов [78], где точное решение интегральных уравнений Чепмена-Энскога дает для коэффициентов переноса значения, которые соответствуют максимальному производству энтропии при заданных градиентах гидродинамических величин (так называемый вариационный принцип Колера).  [c.400]

Ранее отмечалось, что полученные здесь конечно-разностные уравнения не являются единственными, которые можно использовать для аппроксимации исходного дифференциального уравнения (5.17). Приведенные выше уравнения оказываются более предпочтительными по следующим причинам а) при их выводе используются некоторые общие принципы б) изучение можно легко распространить на другие геометрии, для которых уравнение переноса представлено в гл. 1 в дивергентной форме, и в) установлено, что полученные результаты оказываются более точными, чем те, которые даются другими разностными уравнениями. Необходимо отметить, что возможные разностные схемы не были исчерпывающе изучены. Например, вариационный подход к решению, изложенный в конце гл. 6, не рассматривался вплоть до 1968 г. [21].  [c.184]

Во-первых,—единообразный подход к решению задач кинетики. Автор основывается на вариационном методе решения кинетического уравнения, справедливо отмечая, что другие аналитические методы эффективны лишь в применении к более или менее упрощенным моделям. К сожалению, вариационный метод не всегда пользуется тем вниманием, которого он заслуживает. В связи с этим особый интерес для теоретиков может представить гл. VII, посвященная общей теории явлений переноса. В ней, в частности, выявляется связь вариационного метода с основными принципами термодинамики необратимых процессов.  [c.5]

Равенство вероятностей прямых и обратных процессов при квантово-механическом описании внутренних степеней свободы симметризует интеграл столкновений и поэтому квантовомеханический подход удобен для обш их исследований. Однако для получения численных результатов необходимо знать все вероятности переходов (дифференциальные сечения столкновений), определение которых представляет самостоятельную сложную и далеко не решенную проблему. Поэтому фактическое вычисление коэффициентов переноса пока удается провести лишь для весьма схематизированных молекул. В тех случаях, когда время возбуждения внутренних степеней свободы много больше времени возбуждения поступательных степеней, удается выразить коэффициенты переноса для равновесного и релаксируюш,его газа с внутренними степенями свободы с приемлемой точностью через известные коэффициенты одноатомного газа (В. С. Галкин и М. Н. Коган, 1968). С другой стороны, известно, что процесс столкновений молекул при не слишком низкой температуре удовлетворительно описывается классической механикой. Но при классическом описании симметрия прямых и обратных процессов нарушается, интеграл столкновений, а с ним и все исследование суш ественно усложняются. Однако для определения коэффициентов переноса можно пойти другим путем, минуя непосредственное использование уравнения Больцмана (В. И. Власов, С. Л. Горелов и М. Н. Коган, 1968). Макроскопические связи тензора напряжений и вектора потока тепла с гидродинамическими -величинами можно получить, например, с помош,ью теории необратимых процессов или с помош ью вариационных принципов, предложенных Л. И. Седовым  [c.427]



Смотреть страницы где упоминается термин Вариационный принцип при решении уравнения переноса : [c.543]   
Физическая теория газовой динамики (1968) -- [ c.301 , c.303 ]



ПОИСК



Вариационное решение

Вариационный принцип для уравнения

Переноса уравнение уравнение переноса

Переносье

Принцип вариационный

Решение уравнения переноса

Ряд вариационный

Ток переноса



© 2025 Mash-xxl.info Реклама на сайте