Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Теория оболочек вращения анизотропных многослойных

Книга состоит из 11 глав, Гл. 1 содержит сведения из геометрически нелинейной теории многослойных анизотропных оболочек типа Тимошенко построенной на основе независимых гипотез относительно характера распределения перемещений и поперечных касательных напряжений по толщине пакета. Путем использования смешанного вариационного принципа получены уравнения равновесия, граничные условия и интегральные соотношения упругости для поперечных касательных напряжений. В случае осесимметричной деформации многослойных анизотропных оболочек вращения выведена нормальная система десяти обыкновенных дифференциальных уравнений первого порядка, которая в дальнейшем решается численно на ЭВМ.  [c.4]


В гл. 7 обсуждаются вопросы реализации алгоритмов численного решения задач прочности многослойных анизотропных оболочек на ЭВМ. Даны тексты двух процедур, одна из которых предназначена для расчета нелинейного осесимметричного напряженно-деформированного состояния оболочек вращения на основе теории типа Тимошенко, другая - уточненной теории. Приведены примеры составления программ расчета в операционной системе ОС ЕС ЭВМ и некоторые результаты методических исследований.  [c.5]

Структура исходных уравнений нелинейной теории многослойных анизотропных оболочек довольно сложна, получить аналитическое решение уравнений (1.42), (1.43) непросто, позтому будем ориентироваться на их численное решение на ЭВМ, В последние годы самое широкое распространение и признание получила методика решения задач прочности оболочек вращения, согласно которой исходная система уравнений, описывающих напряженно-деформированное состояние конструкции в геометрически линейной постановке, сводилась к решению краевой задачи для нормальной системы обыкновенных дифференциальных уравнений. Этот прием в сочетании с методом ортогональной прогонки оказался настолько плодотворным, что проблема расчета осесимметричных оболочек вращения в классической постановке оказалась в основном завершенной [ 1.16].  [c.23]

Основные соотношения уточненной теории осесимметричных многослойных анизотропных оболочек вращения построены. Учет анизотропии значительно усложняет решение задачи, поскольку в зтом случае приходится интегрировать полную систему нелинейных дифференциальных уравнений двенадцатого порядка, в то время как расчет осесимметричных ортотропных оболочек приводит к решению укороченной системы дифференциальных уравнений восьмого порядка.  [c.45]

Простейший нелинейный вариант теории осесимметричных многослойных анизотропных оболочек построен. Нормальная система уравнений (1.52), граничные условия (1.62), (1.63), соотаошения (1.54), (1.55), (1.57)—(1.59) и система линейных алгебраических уравнений (1.60) полностью разрешают поставленную задачу. Как видим, задача определения напряженно-деформированного состояния многослойных анизотропных оболочек вращения сведена к нелинейной краевой задаче (1.52), (1.62), (1.63), что позволяет применить к ее решению стандартный, хорошо изученный на более простых задачах подход.  [c.27]


Центральное место в монографии занимает третья глава, в которой на основе единой кинематической гипотезы, позволяющей учесть поперечные сдвиговые деформации, удовлетворить условиям межслоевого контакта и условиям на граничных поверхностях, из принципа возможных перемещений получены нелинейные тензорные уравнения статики упругих анизотропных слоистых оболочек и сформулированы соответствующие им краевые условия. Указаны предельные переходы к уравнениям классической теории оболочек и ортотропной оболочки, предоставляющим возможность учета эффектов сдвига в одном направлении ортотропии (армирования) и неучета — в другом. Приведены упрощенные уравнения, пригодные для расчета пологих оболочек. Линеаризованные уравнения статической устойчивости слоистых оболочек, основанные на концепции Эйлера о разветвлении форм равновесия, сформулированы в параграфе 3.4, а в параграфе 3.5 из принципа виртуальных работ эластокинетики выведены нелинейные уравнения динамики. Здесь же приведены линеаризованные уравнения динамической устойчивости слоистых оболочек и пластин, обсуждены предельные переходы и упрощения, подобные тем, какие были сделаны в задаче статики. Параграф 3.5 посвящен формулировке неклассических уравнений многослойных оболочек в системе координат, связанной с линиями кривизн поверхности приведения. В этой же системе координат составлены уравнения, описывающие осесимметричную деформацию слоистой ортотропной оболочки вращения. В параграфе 3.7 описаны  [c.12]


Смотреть страницы где упоминается термин Теория оболочек вращения анизотропных многослойных : [c.462]    [c.128]    [c.236]   
Прочность устойчивость колебания Том 2 (1968) -- [ c.152 , c.158 ]



ПОИСК



Анизотропность

Л многослойное

Оболочка многослойная

Оболочки Теория — См. Теория оболочек

Оболочки вращения

Теория оболочек

Теория оболочек вращения анизотропных многослойных нагруженви симметричном 167175 — Уравнения — Интегрирование асимптотическое 174178 — Уравнения дифференциальные 169, 170, 173, 174 У равнения равновесия 167 Уравнения упругости

Теория оболочек вращения анизотропных ортотропных многослойных

Теория оболочек вращения анизотропных ортотропных многослойных безмоментная



© 2025 Mash-xxl.info Реклама на сайте