Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сооружения защитные

Металл сооружения Защитное покрытие ивэ МЭС  [c.17]

Снижение опасного напряжения защитным устройством достигается путем уменьшения входного сопротивления подземного сооружения. Защитное устройство подключается в местах возможного прикосновения людей, между оболочкой кабеля и заземлителем. В качестве последнего может быть использовано анодное заземление или любое подземное сооружение, имеющее достаточно малое сопротивление растеканию. При совместной защите защитное устройство подключается к перемычке, соединяющий кабель с другим подземным сооружением, защищаемым от коррозии.  [c.74]


Т — для изготовления изделий технического назначения, строительства временных сооружений, защитных укрытий, упаковки и комбинированных пленок, окрашенной и неокрашенной, стабилизированной и нестабилизированной  [c.83]

Снижение дозы облучения до предельно допустимой при проведении работ по радиационной дефектоскопии достигается сооружением защитных устройств, увеличением расстояния между источником излучения и работающим, сокращением времени облучения.  [c.310]

Эксплуатационные наблюдения надзор за состоянием подходных насыпей, искусственных сооружений, защитных н укрепительных устройств обследование всего комплекса сооружений после пропуска паводков при необходимости — организация инструментального обследования объекта.  [c.156]

Генеральный план является основным проектным документом, на котором показаны размеры и конфигурация территории объекта, размещение и габариты имеющихся или проектируемых зданий и сооружений, расположение санитарно-защитных зон, благоустройство территории. Чертеж генерального плана предприятия должен быть увязан с чертежами районной планировки строительных объектов.  [c.279]

Специальные методы укладки используют для защиты подземных сооружений от воздействия грунта и грунтовых вод трубопроводы и кабели размещают на неметаллических подкладках в специальном коллекторе или защитном кожухе из металла или железобетона.  [c.395]

Все более широкое применение находит электрохимическая защита морских судов и сооружений (протекторная и от внешнего источника постоянного тока) в комбинации с защитными покрытиями или как самостоятельное средство защиты металлов от морской коррозии (рис. 288).  [c.404]

Контроль за сооружением и монтажом защитных конструкций, проверка и рабочие испытания эффективности защиты после ее сооружения.  [c.75]

Место расположения очистных сооружений выбирают с учетом перспективного расширения канализируемой территории, а санитарно-защитные зоны (до границ жилой застройки, участков общественных зданий и предприятий пищевой промышленности) принимают по СНиП П-32—74.  [c.214]

Перечисленные особенности гидрологического режима горных рек вносят в компоновку и конструкции водозаборов специфические особенности. Например, ввиду высокой мутности воды в состав узла водозаборных сооружений включают первичные отстойники. На некоторых реках наблюдаются селевые потоки в период ливней, в этих случаях необходимо предусмотреть защитные устройства, предохраняющие водозаборные сооружения от разрушения.  [c.184]


Хлор нли хлорную известь применяют для разрушения защитных коллоидов, препятствующих протеканию процесса коагуляции для обесцвечивания воды для поддержания очистных сооружений в надежном санитарном состоянии и для обеззараживания воды.  [c.222]

Катодная защита основана на наложении отрицательного потенциала от внешнего источника тока на металл, при этом значительно замедляется процесс его ионизации, а в реакцию деполяризации вступают электроны не с металла, а от внешнего источника тока. При этом положительный полюс источника тока подсоединяется к анодному заземлителю. Обязательным условием катодной защиты является наличие токопроводящей среды (природные почва, вода и т.п.) между защищаемым сооружением и анодным заземлителем. Критериями эффективности катодной защиты являются защитный потенциал и плотность тока.  [c.4]

Методика расчёта позволяет определить параметры катодных станций, необходимые для обеспечения защитного потенциала на всех находящихся в заданном районе сооружениях, которые расположены в зоне действия установок электрохимической защиты и имеют контролируемые и неконтролируемые металлические соединения, обеспечивающие электрическую проводимость.  [c.7]

Значение суммарного защитного тока, который необходим для обеспечения катодной поляризации подземных сооружений, расположенных в данном районе, равно, А  [c.9]

В случае, когда уровень отрицательного потенциала источника блуждающих токов недостаточен для обеспечения защитного потенциала (Ез) на защищаемом сооружении в пределах нормированного, допускается применение  [c.28]

Усилительный пункт — совокупность усилительных станций одной или нескольких систем передачи с ЧРК, измерительной аппаратуры, кабельных вводов, защитного сооружения — здания, цистерны или контейнера, обеспечивающая усиление сигналов, передаваемых по линейным трактам систем передачи с ЧРК.  [c.77]

По уменьшению эффективной работы пары неравномерной аэрации металлы располагаются в ряд цинк, хром, углеродистая сталь, серый чугун, кадмий, алюминий, медь, свинец, нержавеющая высокохромистая стапь, висмут, цирконий, тантал, титан. Из приведенного перечня следует, что весьма перспективный конструкционный материал для подземных сооружений - это титан, который, помимо высоких механических свойств, малой плотности, обладает также хорошими коррозионными характеристиками высокой общей коррозионной стойкостью и высокой устойчивостью к иону хлора, а также низкой чувствительностью к образованию пар дифференциальной аэрации. Из приведенных данных можно также сделать предположение о целесообразности применения циркония в качестве защитного покрытия на стальных изделиях в почвенных условиях.  [c.48]

Защитные свойства цинковых покрытий в морской воде достаточно высоки, и оцинкованную сталь широко используют для защиты от коррозии стальных сооружений, морских нефтепроводов. Эффективно применение цинковых покрытий для защиты от коррозии стальных опор нефтепромысловых сооружений. По данным литературных источников, диффузионное цинкование позволяет повысить коррозионную стойкость стальных опор в зоне переменного смачивания (0,5 м над водой), где стойкость незащищенной стали наименьшая при этом скорость коррозии составляет для оцинкованной стали 5—10 мкм/год, для незащищенной 300 мкм/год. 15-летний опыт эксплуатации труб с диффузионным цинковым покрытием на морских нефтепромыслах Нефтяные камни и о. Артема показал эффективность этого вида защиты. Алюминиевые покрытия позволяют повысить защитные свойства стали по сравнению с цинковыми в хлорсодержащих растворах в 2-3 раза. По данным лаборатории морского флота США, металлизационные алюминиевые покрытия толщиной 120 мкм обеспечивают долговечность защиты в морской воде до 10 лет, в сочетании с однослойным виниловым лаком — до 12 лет.  [c.80]


Защитные неметаллические покрытия успешно применяют для защиты газонефтепромыслового и добывающего оборудования, бурильных и насосно-компрессорных труб, магистральных и промысловых газопроводов, резервуаров и различных технологических емкостей, деталей насосов и др. Нанесение полимерных покрытий на дешевые и недефицитные стали дает значительную экономию средств при сооружении и эксплуатации различных объектов нефтяной промышленности.  [c.127]

Используя закономерности прохождения заряженных частиц, рептгеновских или у-лучей и нейтронов через вещество ( 4, 5), рассчитываются сооружения защитных устройств в виде стен и экранов. Изготовляются специальные защитные устройства щипцы и манипуляторы, вытяжные шкафы, контейнеры для хранения и переноса радиоактивных веществ, спецодежда, фартуки, перчатки и др. Большое значение имеет исслёдовйние свойств защитных материалов (свинец, бетон, сталь, железо, чугунный кирпич, вода, вольфрам, свинцовое стекло и т. д. для защиты от 5-излучения применяются алюминий, плексиглас и др.).  [c.218]

Для станций катодной защиты от коррозии изготовляют защитные установки номинальной выходной мощностью примерно от 10 Вт для цистерн (бензоколонок) и коротких трубопроводов до 20 кВт для крупных подводных стальных сооружений. Защитные установки для трубопроводов обычно имеют выходную мощность в пределах 100—600 Вт. Рекомендуется принимать номинальный ток защитной установки примерно вдвое большим, чем требуемый защитный ток по расчету, чтобы иметь достаточный запас на будущее расширение системы, в случае возможного снижения сопротивления изоляции, увеличения блуждающих токов и других изменений. Требуемое номинальное напряжение на выходе определяется по величине необходимого защитного тока и сопротивлению цепи анодный заземлитель—грунт — объект защиты, которое принимается по оценке или мод5ет быть измерено после окончательной установки анодных заземлителей. По напряжению на выходе тоже необходимо предусматривать достаточный запас. По номинальным значениям тока и напряжения на выходе может быть получено номинальная выходная мощность.  [c.219]

Металл сооружения Защитные потенциалы (в) по отношению к неполнризующимся электродам Среда  [c.45]

Для решения задач по строительству на селе создаются комплексы машин и оборудования по массовому строительству складских сооружений для хранения зерна, минеральных и химических удобрений и других массовых грузов. Эти машины и оборудование позволят возводить складские здания сводчатого типа, состоящие из пространственных тонкостенных железобетонных элементов. Комплекс оборудования будет состоять из автоматизированных установок для формования тонкостенных элементов свода, автоматизированных монтажных машин с дистанционным управлением, установок для замоноличивания стыков и покрытия готовых сооружений защитными составами и красками и ряда машин вспомогательного назначения.  [c.6]

Основной задачей защиты является снижение дозы на рабочем месте до предельно допустимой. Это возможно либо за счет увеличения расстояния между источником излучения (рентгеновской трубкой) и контролером, либо за счет сооружения защитных стен, перегородок и экранов, поглощающих как прямое, так и рассеянное излучение, причем для уменьщения расхода защитного материала, стенки и перегородки располагают по возможности ближе к источнику излучения. Ослабление рентгеновского излучения защитным материалом зависит от энергии рентгеновских лучей (или длины волны к) и от атомного номера 2 защитного материала. Ослабление излучения тем сильнее, чем больще значения К и Z (ц/р СЯ, 2 ). Толщину защитного материала выбирают таким образом, чтобы мощность дозы излучения в воздухе, прошедшего через защитный слой, не превышала мощности предельно допустимой дозы, т. е. была бы не более 2,8 мР/ч (0,8 мкР/с).  [c.145]

Широкое применение неметаллических конструкционных материалов, футеровочных и обкладочных материалов, защитных неметаллических покрытии ограничено, однако, наличием ряда недостатков у этих материалов. К недостаткам неметаллических материалов относится их малая теплопроводность (за исключением графита) и невозможность применения многих из них при температурах выше 150—200° С. Быстрое разрушение при деист ПИИ особо агрессивных сред не позволяет применять в этих ус-. овиях некоторые из неметаллических материалов, например в условиях воздействия окислительных сред. Невысокие прочностные характеристики не позволяют применять эти материалы в условиях повышенных механических нагрузок и давлений. Из неметаллических материалов не всегда можно изготовить рациональную конструкцию иногда приходится создавать громоздкие установки или новые типы аппаратов и сооружений. К недостат-.  [c.352]

Использование способности низколегированных с1алей образовывать защитные пленки ржавчины, предохраняющие от атмосферной коррозии, привело к созданию так называемых кар-тенов. Их применяют для строительства зданий, мостов или отделки. Эти стали не требуют покраски благодаря этому экономятся значительные средства на протяжении всего срока службы сооружений. В типичном промышленном варианте они имеют следующий состав 0,09 % С 0,4 % Mri 0,8 % Сг 0,3 % Ni 0,4 % Си 0,09 % Р. В условиях постоянного увлажнения (например, в воде или в почве) эти стали не имеют преимущества перед углеродистыми, так как образующиеся пленки продуктов коррозии не об-  [c.180]

Металл, помещённый в электролит, всегда имеет естественный алектродный потенциал. На основании экспериментальных данных оыло установлено, что естественным потенциал г.шогих стальных подземных трубопроводов ле>.111т в пределах от минус 0,35 В до минус 0,65 Вм Поэтому при расчёте катодном защиты, если нет замеренных данных, естественный потенциал стали принимают равным минус 0,55 В по отношению к медносульфатному электроду сравнения (Ы.С.Э) Потенциал защищаемой конструкции, при котором ток коррозии практически равен нулю, называется защитным потенциалом. Практически стальные подземные сооружения становятся защищёнными на 80...90 если потенциал равен минус 0,85 В. Эта величина принята в нашей стране как критерий минимального защитного потенциала. Однако указанный минимальный потенциал достаточен только в случае, если отсутствует анаэробная биокоррозия. Цри наличии последней защитный потенциал должен быть более отрицательным, равным минус 0,95В.  [c.40]


При катодной защите трубопровода защитный потенциал изменяотоя по длине так как в наиболее удалё1шых точках должен быть минимальный защитный потенциал, то на ближних участках трубопровода неизбежно создаются большие значения защитного потенциала, что может ускорить разрушение и отслаивание покрытия от металла. В связи с этим величина максимального защитного потенциала также ограничивается согласно ГОСТ 9.015-74. Максимальный поляризационный потенциал стальных сооружений ограничивается величиной минус 1,1 В (М.О.ЭЛ  [c.40]

Преимуществами катодной защиты являются её высокая эффективность (-95...99%), возможность защиты больших металлических площадей в различных средах, автоматическое регулирование поляризационного защитного по-гснциала, а йсдостйткамй- вероятность усиления коррозии соседних металличе-ских сооружений, не входящих в систему защиты данньк сооружений необходимость регулярного контроля и ремонта высокая начальная стоимость монтажа системы катодной защиты.  [c.4]

Потенциал защищаемой конструкции при котором ток коррозии практически равен нулю, называют защитным потенциалом (Езащ.). Практически стальные подземные сооружения становятся защищёнными, если потенциал равен минус 0,55В по водородному электроду сравнения, или минус 0,85В по МСЭ. Эта величина принята как критерий минимального защитного потенциала (Es.min). Однако указанный минимальный потенциал достаточен только в случае если отсутствует микробиологическая коррозия. При наличии в грунте СВБ (сульфатвосстанавливающих бактерий) потенциал должен быть более отрицательным, равным минус 0,95В.  [c.6]

При катодной защите трубопроводов защитный потенциал изменяется по длине ( рис. 1.2 ). Так как в наиболее удалённых точках должен быть минимальный защитный потенциал, то на ближайшие и точки дренажа поверхности неизбежно устанавливается болм высокий потенциал. Максимальный защитный потенциал (Ез.тах) -это максимально допустимый потенциал защищаемой конструкции. При этом потенциале обеспечивается благоприятное сочетание всех параметров защиты и затруднены процессы катодной водородной деполяризации, которые могут способствовать отслаиванию защитньк покрытий и на-водороживанию металла, и, следовательно, ухудшение его несущей способности. Максимальный защитный потенциал ограничивается нормативными документами. Так, согласно ГОСТ 25812-83 максимальный поляризационный потенциал стальных сооружений ограничивается величиной минус 1,15В (по МЭС) для сооружений с битумной или полимерной плёночной изоляцией.  [c.7]

Участки, где блуждающие токи натекают на подземные металлические сооружения (ПМС), являются катодами (катодные зоны), на ких создается защитный эффект, аналогичный с катодной. Участки, где токи стекают с металлического сооружения являются анодами (анодные зоны) и подвергаются дополнительному электрохимическому растворению. Коррозионные повреждения подземных трубопроводов и других металлоконструкций от действия блуждающих токов обычно происходят на небольшой поверхности металла, носят ярковыраженный язвенный характер и имеют кругл> о или продолговатуто форму.  [c.22]

Назначение СКЗ - создание защитного отрицательного потенциала на сооружении в момент, когда участок рельсового пути приобретает потенциал более положительный, чем потенциал близкорасположенного сооружения, а потенциал последнего меньше минимального защитного. Усиленный дренаж имеет следующие преимущества по сравнению с другими видами дренажа более широкая регулировка загцитного потенциала, возможность снижения сечения дренажного кабеля. К достоинствам усиленных дренажей можно отнести и меньшее их влияние на соединения незашишенных сооружений по сравнепию с влиянием при защите сооружений катодными станциями. Вместе с тем усиленный дренаж применяют сравнительно редко из-за того, что положительный потенциал дополни гельного источника гока, подключенного к рельсам, мешает эффективной работе электрического дренажа и анодно поляризует металл рельсовой сети.  [c.29]

Значение потенциала, при которо.м достигается абсо.чютная зашита конструкции, носит название защитного потенциала. По- стандарта.м СССР при a щe твлeнии катодной поляризации подземных стальных сооружений должно быть выдержано среднее-  [c.66]

Коррозионная стойкость стали в атмосферных условиях резко возрастает при введении даже незначительного количества легирующих элементов, поэтому применение низколегированных сталей в качестве строительных и конструкщюнных материалов, эксплуатируемых в атмосферных условиях, экономически выгодно долговечность сооружений может быть повышена в 2-3 раза без дополнительной защиты в условиях промышленной, городской и сельской атмосферы. Защитное действие легирующих элементов в атмосферостойких низколегированных сталях основано на том, что легирующие элементы либо их соединения тормозят обычные фазовые превращения в ржавчине (см. рис. 1), и поэтому слой ржавчины на атмосферостойкой стали уплотняется. Считается также, что наряду с усилением защитных свойств слоя продуктов коррозии основной причиной положительного влияния меди является возникновение анодной пассивности стали за счет усиления эффективности катодной реакщш. Действие меди как эффективного катода подтверждается тем, что ее положительное влияние наблюдается уже в начальных стадиях коррозии, когда на поверхности стали еще не образовался слой видимых продуктов коррозии.  [c.12]


Смотреть страницы где упоминается термин Сооружения защитные : [c.368]    [c.226]    [c.201]    [c.140]    [c.594]    [c.240]    [c.168]    [c.255]    [c.63]    [c.68]    [c.68]    [c.40]    [c.220]    [c.32]    [c.36]   
Справочник инженера-путейца Том 1 (1972) -- [ c.93 ]



ПОИСК



Защитная плотность тока для изолированного сооружения

Защитные и укрепительные сооружения и устройства земляного полотна

Ограждения на городских транспортных сооружениях защитные полужесткие

Подвесные канатные дороги грузовы защитные сооружения

Приготовление резиновых клеев мастик. Технология антикоррозийных работ Подготовка поверхности аппаратов и сооружений под защитные покрытия

Распределение защитного тока и влияние на посторонние сооружения

Сооружения

Сооружения защитные и выпрямительные

Способы нанесения антикоррозионных защитных покрытий на сваи морских нефтепромысловых сооружений

Укрепительные и защитные устройства и сооружения



© 2025 Mash-xxl.info Реклама на сайте