Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Оператор противоточного теплообменника

Таким образом, будем считать, что функциональный оператор противоточного теплообменника А Ti ВХ (О, т, ВХ вых it),  [c.180]

Таким образом, динамика процесса абсорбции в насадочном аппарате в режиме идеального вытеснения без труда может быть описана с помощью формул, аналогичных уже полученным для противоточного теплообменника. Значительно сложнее исследовать динамику насадочного абсорбера в том случае, когда нельзя пренебречь продольным перемешиванием. При использовании одно-параметрической диффузионной модели абсорбер описывается уравнениями (1.2.30), (1.2.31) с граничными условиями (1.2.37) (считаем, что расходы по жидкости и газу постоянны). Как и раньше, будем полагать, что функция 0 (0 ) имеет линейный вид 0д = Г01. При этом функциональный оператор А, задаваемый с помощью уравнений (1.2.30), (1.2.31), граничных условий (1.2.37) и нулевых начальных условий будет линейным. Но поскольку уравнения математической модели являются уравнениями в частных производных второго порядка, исследовать этот линейный оператор очень трудно. С помощью применения преобразования Лапласа по t к уравнениям и граничным условиям можно получить выражение для передаточных функций. Однако они будут иметь столь сложный вид по переменной р, что окажутся практически бесполезными для описания динамических свойств объекта. Рассмотрим математическую модель насадочного абсорбера с учетом продольного перемешивания при некоторых упрощающих предположениях. Предположим, что целевой компонент хорошо растворяется в жидкости, и поэтому интенсивность процесса массообмена между жидкостью и газом пропорциональная концентрации целевого компонента в газе. В этих условиях можно считать 0 (в ) 0. Физически такая ситуация реализуется, например, при хемосорбции, когда равновесная концентрация поглощаемого компонента в газовой фазе равна нулю. При eQ( i,) = 0 уравнение (1.2.30) становится независим мым от уравнения (1.2.31), поскольку в (1.2.30) входит только функция 0g(->i , t)- При этом для получения решения o(Jf, t), системы достаточно решить одно уравнение (1.2.30) функцию L x,t), после того как найдена функция можно найти  [c.206]


По программе блока VI вычисляются комплексные значения операторов Rij для Wij. Если теплообменник радиационный или трубопровод, то в результате работы блока в соответствии с табл. 8-3 определяются непосредственно передаточные функции теплообменника. Для конвективного теплообменника дололнительно рассчитываются значения Rtk для определения передаточных функций к температуре газа. Для прямоточного конвективного теплообменника частотные характеристики всех передаточных функций совладают с Ra. Для противоточного теплообменника частотные характеристики определяются по значениям Rjk в соответствии с табл. 8-2.  [c.131]

Таким образом, операторы Rju, j=i, D2, р, t k = j, q, Dr, связывающие входные и выходные координаты теплообменника, выражаются в явном виде через трансцендентные функции Яп и комплексы, составленные из коэффициентов уравнений динамики, комплексного параметра преобразования Лапласа по времени s и передаточных функций разделяющей стенки. Выще были приведены выражения и показан способ их определения для наиболее общего случая конвективно-радиационного теплообменника со сжимаемой рабочей средой, распределенными по длине температурой газа и энтальпией рабочей среды. Вид Rjh не зависит от модели разделяющей стенки. Выбор модели стенки влияет только на выражения передаточных функций Операторы Rjh для трубопроводов, радиационных теплообменников и прямоточных конвективных теплообменников совпадают с соответствующими передаточными функциями Wjk. В случае противоточного конвективного теплообменника возмущения по температуре газа задаются в точке. =1. Операторы Rju получены в результате решения задачи Коши, когда возмущения считались заданными в точке Х=0. Поэтому для лротивоточного теплообменника передаточные функции Wjh не совпадают с Rjh, а определяются комбинацией последних в соответствии с табл. 8-2.  [c.123]


Динамика процессов химической технологии (1984) -- [ c.46 , c.179 , c.180 ]



ПОИСК



Оператор

Противоточный теплообменник типа функциональный оператор

Теплообменник противоточный

Теплообменники



© 2025 Mash-xxl.info Реклама на сайте