Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Переходные функции стационарного объекта

Передаточная функция стационарного объекта, описываемого уравнением (3 1.1), является дробно-рациональной функцией вида (3.1.35). Поскольку для дробно-рациональных функций переход к оригиналам осуществляется весьма просто, выражение (3.1.35) часто используют для определения весовой и переходной функций стационарного объекта. В соответствии с соотношениями (2.2.74) и (2.2.76) для определения весовой функции g t) требуется применить обратное преобразование Лапласа к функции W p), а для определения переходной функции h(t) — K функции W p)/p. Необходимо разложить дробно-рациональные функции W (р) и р)/р на простейшие дроби и осуществить переход к оригиналам в каждом слагаемом.  [c.92]


После построения передаточной функции стационарного объекта можно определить и другие его характеристики весовую и переходную функции. В соответствии с соотношениями (2.2.74) и (2.2.76) для их нахождения нужно применить обратное преобразование Лапласа к функциям W p) и W p)/p.  [c.101]

Аналогично получаем, что и переходная функция Н(1,т) будет для стационарного объекта зависеть только от разности t — x, т. е.  [c.69]

Соотношения (2.2.74) и (2.2.76), связывающие передаточную функцию с весовой и переходной функциями, очень часто используются при описании стационарных объектов. Они позволяют по одной из функций W p), h t) или g t) найти две другие. Как правило, исходной, наиболее просто определяемой, является передаточная функция W p).  [c.70]

Рис. 2.4. Переходная функция h t) линейного стационарного объекта. Величина заштрихованной площади равна значению инерционности процесса. Рис. 2.4. <a href="/info/24657">Переходная функция</a> h t) линейного стационарного объекта. Величина заштрихованной площади равна значению инерционности процесса.
Весьма важной характеристикой стационарного объекта является переходная функция h t). По определению она представляет собой выходную функцию объекта, на вход которого подано воздействие в виде ступенчатой функции % t), т. е. когда на входе объекта в момент t = О произошел скачок входного воздействия от нуля до единицы. Таким образом, h t) описывает процесс перехода объекта из стационарного режима работы, соответствующего u t) S О, в стационарный режим работы, соответствующий u t) 1 (рис. 2.4).  [c.72]

Приведенный пример ясно показывает, что наиболее важной характеристикой стационарных объектов является передаточная функция W p). Это связано, во-первых, с тем, что она легко может быть получена из уравнений математической модели после применения к ним преобразования Лапласа по времени, и, во-вторых, с тем, что с помощью W р) легко может быть получена весовая функция g t) и переходная функция h t).  [c.75]

Рассмотренный пример иллюстрирует общую идею линеаризации, которая заключается в выделении некоторого стационарного режима работы объекта. При этом считается, что все переходные процессы в объекте закончились и на выходе установилось стационарное значение выходного параметра. Если скачок значения выходной функции от нуля до стационарного значения произошел в некоторый конечный момент времени (о, то теоретически переходной процесс в объекте нельзя считать закончившимся поэтому необходимо предполагать, что стационарное входное воздействие подается бесконечно долго, т. е. момент времени to отодвинут в —00. Исходный нелинейный оператор заменяется эквивалентным нелинейным оператором, входными функциями которого являются малые отклонения входного воздействия от начального стационарного значения. Разлагая все нелинейные функции параметров, входящие в дифференциальные уравнения, по степеням отклонений этих параметров от их стационарного значения и отбрасывая все члены разложения, содержащие степени отклонений выше первой, получим линейные дифференциальные уравнения, задающие линейный оператор. Этот оператор и является результатом линеаризации. При входных параметрах, мало отклоняющихся от их значений в выбранном стационарном режиме, выходные функции исходного оператора приближенно выражаются через выходные функции построенного линейного оператора.  [c.81]


В конце раздела 2.2. уже был приведен простой пример отыскания весовой и передаточной функций объекта, описываемого обыкновенным дифференциальным уравнением первого порядка с постоянными коэффициентами. Теперь будут изложены основные способы определения весовой, переходной и передаточной функции линейных объектов с сосредоточенными параметрами, математическая модель которых включает только обыкновенные дифференциальные уравнения. Рассмотрим общий случай, когда коэффициенты уравнений являются произвольными функциями времени, т. е. объект не является стационарным.  [c.82]

Получение передаточной функции является, как правило, первым шагом в исследовании динамики технологического объекта. Несмотря на то, что знание передаточной функции W(p) дает полную информацию о динамических свойствах объекта, часто в различных конкретных задачах бывает удобно использовать для характеристики объекта не W (р), а весовую функцию g t) или переходную функцию h(t). Выше уже отмечалось, что h t), например, является самой естественной характеристикой процесса перехода объекта из одного стационарного режима работы в другой, поскольку непосредственно описывает изменение выходного параметра при таком переходе. Поэтому, после того как получено аналитическое выражение для передаточной функции, возникает задача применения к ней обратного преобразования Лапласа с тем, чтобы получить весовую функцию g t) и переходную функцию h t). Такая задача часто оказывается трудноразрешимой, поскольку аналитическое выражение передаточных функций объектов с распределенными параметрами имеет очень сложный вид. В связи с этим применяются различные методы получения приближенного выражения для весовой и переходной функций с помощью точного аналитического выражения для передаточной функции W p). Указанные методы можно разделить на две группы.  [c.107]

Отметим, что (3.3.9) и (3.3.12) представляют собой разложения функций g t) и h t) в ряд Тейлора около точки = 0 (ряд Маклорена). Поэтому приближенное представление g t) с помощью (3.3.11) и h t) с помощью (3.3.13) справедливы вблизи точки = 0, причем чем больше взято членов в (3.3.11) и (3.3.13) [соответственно, чем больше членов в (3.3.10)], тем больше интервал вблизи точки = О, на котором gN t) и Лл/(0 дают достаточно точную аппроксимацию для g t) и h t). В реальных технологических объектах весовая функция g t) экспоненциально стремится к нулю, а переходная функция h(t) при t oo стремится к конечному пределу /г(оо), соответствующему выходу объекта на стационарный режим работы. Фактически за конечное время to происходит изменение g t) от начального значения до нуля и h t) от начального нулевого значения до стационарного значения /2(00) (рис. 3.1), поэтому для получения полной информации о переходных процессах в объекте достаточно выбрать в (3.3.10) столько слагаемых, сколько нужно для того, чтобы соответствующие функции gN t) и hN(t) с необходимой для практических целей точностью аппроксимировали g(t) и h t) в интервале [О, о].  [c.112]

Очевидно, условие 7 с( ) = 0, используемое выше, не имеет физического смысла. В реальных теплообменниках всегда T t) >0. Однако заметим, что при решении математической задачи нахождения явного вида переходных функций непосредственно из дифференциальных уравнений модели необходимо отвлечься от физического смысла входящих в уравнение параметров, так как в соответствии с определением переходной функции для ее нахождения нужно использовать нулевые значения входных параметров объекта. В разделе 2.2 было показано, как, располагая явным видом переходных функций, можно описывать процесс перехода объекта из одного реального стационарного режима работы в другой.  [c.122]

Переходные функции hn t) и h2 (t) можно использовать для описания перехода объекта из одного стационарного состояния в другое. Пусть до момента / = О теплообменник находился в стационарном режиме работы при постоянных значениях и  [c.144]


Аналитические методы определения динамических характеристик объектов основаны на составлении их дифференциальных уравнений, которые базируются на использовании физических законов сохранения массы, энергии и количества движения. Таким путем удается получить нелинейное уравнение динамической характеристики, однако решить его аналитически не удается. Следующим этапом является линеаризация уравнения, т. е. переход к линейной математической модели объекта. Линеаризацию обычно проводят разложением нелинейных зависимостей в ряд Тейлора в приближении исходного стационарного режима с сохранением только линейной части разложения и последующим вычитанием уравнений статики. Полученная таким образом линейная модель объекта справедлива при малых отклонениях от исходного стационарного режима. Решение уравнения при ступенчатом или импульсном изменении входных величин позволяет получить переходные функции — кривые разгона или импульсные временные характеристики объекта. Рещение часто приводит к области изображений Лапласа или Фурье. В этом случае получаются передаточные функции или амплитудно-фазовые характеристики. Для выявления динамической характеристики котла аналитическим путем необходимо построение его математической модели.  [c.498]

Практически все объекты химической технологии можно считать стационарными, поэтому, как показано в гл. 3, наиболее просто для них определяется передаточная функция W p). В связи с этим, как правило, именно определение передаточной функции будет являться первой задачей при исследовании каждого процесса. Две другие характеристические функции весовая и переходная, будут определяться чаще всего с помощью обратного преобразования Лапласа уже после того как получена передаточная функция W p). Будем рассматривать различные модели теплообменников, введенные в гл. 1,  [c.114]

На рис. 41 приведены профили дорог двенадцати различных участков [75 ]. Для того чтобы перейти от случайной функции F (дс), зависящей от координаты х, к функции воздействия F (i), зависящей от времени t, в работе [75] предлагается координату х разделить на единичную скорость = 1 м/с. В этом случае численные значения функции профиля дороги F (х) будут совпадать с численными значениями функции воздействия F (t). Очевидно, что при постоянной скорости движения транспорта по данному участку дороги и прочих равных условиях величина и направление воздействия не зависят от того, когда машина проезжает через этот участок дороги. Поэтому процесс воздействия дороги на транспорт в расчетах можно рассматривать как стационарный случайный процесс. Однако в начальный момент движения, даже если предположить, что движение сразу началось с постоянной скоростью, динамическая система (транспорт и перевозимые объекты) будет в переходном режиме колебания, который, как мы видели выше, существенно может отличаться качественно и количественно от  [c.123]

Аналитические методы определения характеристик объектов регулирования основаны на составлении их дифференциальных уравнений. Составление дифференциальных уравнений базируется на использовании основных физических законов сохранении массы, энергии и количества движения. Как правило, таким путем удается получить нелинейное уравнение объекта, аналитическое решение которого в общем случае не может быть получено. Следующим шагом является линеаризация полученного уравнения, т. е. переход к линейной математической модели объекта. Линеаризация обычно проводится путем разложения нелинейных зависимостей в ряд Тейлора в окрестности исходного станционарного режима с сохранением только линейной части разложения и последующим вычитанием уравнений статики. Полученная таким образом линейная модель объекта справедлива лишь при малых отклонениях от исходного стационарного режима. Решение уравнений при ступенчатом или импульсном изменении входных величин позволяет получить соответственно переходные функции (кривые разгона) или импульсные временные характеристики объектов. Решение часто проводят в области изображений Лапласа или Фурье. В этом случае получают соответственно передаточные функции или амплитудно-фазовые характеристики.  [c.817]


Смотреть страницы где упоминается термин Переходные функции стационарного объекта : [c.60]   
Динамика процессов химической технологии (1984) -- [ c.69 ]



ПОИСК



1---переходные

Переходные функции

Функция стационарных объектов



© 2025 Mash-xxl.info Реклама на сайте