Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Структура текучести

Фиг. 464—466. Структура текучести при кручении стержней квадратного поперечного сечения (2x2 см), 0—относительный угол Фиг. 464—466. Структура текучести при кручении стержней квадратного <a href="/info/7024">поперечного сечения</a> (2x2 см), 0—относительный угол

Структура, получающаяся при охлаждении, п структура текучести.  [c.580]

Фиг. 494—502, Структура текучести, получающаяся при кручении стальных стержней с выточкой. Фиг. 494—502, Структура текучести, получающаяся при кручении стальных стержней с выточкой.
Зернистые структуры при одинаковой твердости обладают более высокими значениями Оо,2, -ф, (предел текучести, относительное сужение и ударная вязкость), чем пластинчатые.  [c.298]

Величина От — оо для ОЦК металлов с простой структурой не зависит от температуры [222]. В этом случае при любой температуре достижение предела текучести [см. равенство (2.3)] будет автоматически приводить к выполнению условия (2.4).  [c.67]

По сравнению с методом АЭ ММП начинает работать на более раннем этапе, начиная с превышения внешней нагрузкой уровня внутренних напряжений металла. Дня большинства малоуглеродистых марок сталей средний уровень внутренних напряжений, обусловленный неоднородностью структуры, равен 60-80 МПа, т.е. составляет -0,3 от предела текучести этих материалов. Из теории прочности и механики  [c.349]

Пайкой называют соединение металлических или металлизированных деталей с помощью припоя (расплавленного металла или сплава), температура плавления которого ниже температуры плавления материала соединяемых деталей. В отличие от сварки пайка сохраняет неизменными структуру, механические свойства и химический состав основного материала. Пайка вызывает значительно меньшие остаточные напряжения. В процессе пайки между соединяемыми поверхностями деталей вводится расплавленный припой, который после остывания образует шов, менее прочный, чем сварной. Качественный паяный шов можно получить только при чистых поверхностях спаиваемых деталей. Для защиты поверхности от окисления применяют флюсы, которые, защищая поверхности от окисления, повышают текучесть припоя.  [c.371]

Мультифрактальные характеристики структуры границ зерен, предел текучести От, и средний размер зерна d, мм аустенитных Ni-Mn-сталей (И.Ж. Бунин и др.)  [c.125]


Рис. 23. Зарождение усталостных микротрещин у неметаллических включений в образцах из низкоуглеродистой стали Ст.З (а, б) дислокационная структура у неметаллического включения на стадии циклической текучести (в) и схема зарождения усталостной трещины Рис. 23. Зарождение усталостных микротрещин у <a href="/info/63878">неметаллических включений</a> в образцах из <a href="/info/271628">низкоуглеродистой стали</a> Ст.З (а, б) <a href="/info/1785">дислокационная структура</a> у <a href="/info/63878">неметаллического включения</a> на <a href="/info/479488">стадии циклической текучести</a> (в) и схема зарождения усталостной трещины
Чаще всего с уменьшением размера зерна предел выносливости возрастает, хотя в ряде работ показано, что измельчение структуры металла не всегда приводит к изменению долговечности. При анализе влияния структурного фактора на циклическую прочность необходимо иметь в виду, что закономерности разрушения металлических материалов при циклическом и ст атическом нагружении имеют много общего. Для циклического нагружения зависимость предела усталости стк от размера зерна можно выразить формулой, аналогичной зависимости предела текучести от размера зерна  [c.78]

Влияиие измельчения зерна феррита на предел текучести характеризуется так называемой формулой Холла — Петча (см. рис. 291) сго,2= 0о+ (Оо,2 —предел текучести Сто — предел текучести очень крупнозернистого металла К — коэффи.циент d — размер зерна). Тем не менее, согласно посладним данным, эта фцрмула не точна, так как предел текучести зависит не только от размера зерна, но и внутренней (тонкой) его структуры.  [c.369]

Существует также способ повышения прочности сталей со структурой среднеуглеродистого мартенсита — это небольшая пластическая деформация уже термически обработанной стали, при этом, как правило, прочность (ов) не изменяется, а предел текучести возрастает, достигая практически значения предела прочности (при ТМО предел текучести все же значительно уступает пределу прочности, повышение предела текучести, как правило, важнее, чем предела прочиости, так как предел текучести является обычно расчетной характеристикой).  [c.393]

Поскольку термпчгской обработкой закалка + отпуск 600°С невозможно значительно повысить прочностные свойства СтЗ, то в тех случаях, когда необходимо иметь более высокий предел текучести, применяют легированные стали. Эти стали обычно называют низколегированными, или строительными сталями повышенной прочности, В отличие от конструкционных легированных сталей, строительные стали повышенной прочности у потребителей не подвергаются термической обработке, т. е. структура и служебные характеристики формируются при производстве сталей.  [c.401]

ИИ 0,2,% С бейнитная структура имеет предел текучести (сго.г) 45 кгс/мм при хорюшей пластичности.  [c.402]

Поэтому, когда образуется при испытании мартенсит, кривые Оп и Оо,2 рас.чодятся (рис. 367,а), и соотношение Оо.г/Ов уменьшается. Сталь Х18АГ19 не содержит никеля н несмотря на аустенитную структуру в ней при тем iiepaiypav ниже (—80) — (— 100)"С появляется в изломе хрупкая составляющая, В этом случае пластичность снижается, предел текучести при снижении т. -.-пературы быстро повышается, кривые 00,2/Ов сближаются (рис. 367,в) и отношение а /ао.2 становится больиге 0,5, достигая 1.  [c.499]

Рис. 2.6. Схема взаимодействия микротрещины с изменяющейся в процессе деформирования структурой (а), а также температурные зависимости критического разрушающего напряжения Of, предела текучести От в случае совпадения (а) и несовпадения (б) минимального значения разрушающего напряжения 0mln С От Рис. 2.6. Схема взаимодействия микротрещины с изменяющейся в <a href="/info/184594">процессе деформирования</a> структурой (а), а также <a href="/info/191882">температурные зависимости</a> критического разрушающего напряжения Of, <a href="/info/1680">предела текучести</a> От в случае совпадения (а) и несовпадения (б) минимального значения разрушающего напряжения 0mln С От

Указанное следствие вытекает из второго важного момента предложенной схематизации процесса хрупкого разрушения условия зарождения, страгивания и распространения трещин скола являются независимыми. Разрушение в макрообъеме в зависимости от температурно-деформационных условий нагружения может контролироваться одним из перечисленных процессов. Для случая одноосного растяжения условия зарождения, страгивания и распространения микротрещин скола можно изобразить в виде схемы (рис. 2.7), использовав параметрическое представление в координатах а — Т. Кривая 1 соответствует условию зарождения микротрещин скола, причем это условие не совпадает с условием достижения макроскопического предела текучести. Прямая 2, отвечающая напряжению а=5о, есть условие страгивания. Линия 3 определяет условия распространения микротрещин скола в изменяющейся в процессе деформирования структуре материала. Очевидно, что при условии о От параметр ap = onst, поскольку в этом случае rie сформированы  [c.65]

Частицы карбидов в структуре троостита или сорбита отпуска в отличие от троостита и сорбита, полученных в результате распада переохлажденного аустенита, имеют зернистое, а не пластинчатое строение. Образование зернистых структур улучшает многие свойства стали, особенно пластичность и вязкость, а главное—сопротивление разруи1ению. При одинаковой твердости и временном сопротивлении сталь с зернистой структурой имеет более высокие значения предела текучести, относительного сужения и ударной вязкости, а также параметров вязкости разрушения,  [c.187]

Напряжения второго рода возникают вследствие неоднородности кристаллического строения и различия физико-механических свойств фаз и структур сплавов. Фазы, например в черных металлах, феррит, аустенит, цементит, графит обладают различной кристаллической решеткой их плотность, прочность и упругость, теплопроводность, теплоемкость, характеристики теплового расширения различные. Структуры, представляющие собой смесь фаз, например перлит в сталях, а также закалочные структуры, в свою очередь, обладают отличными от смежных структур свойствами. Различие кристаллической ориентации зерен металла обусловливает анизотропию физико-механических свойств микрообъемов металла. В результате совместного действия этих факторов возникают внутри-зеренные и межзеренные напряжения еще в нронессе первичной кристаллизации и при последующих прев эащениях во время охлаждения. При высоких температурах напряжения уравновешиваются благодаря пластичности материала. Однако они проявляются в низкотемпературной области, возникая при фазовой перекристаллизации и выпадении вторичных и третичных фаз (фазовый наклеп), при каждом общем или местном повышении температуры (из-за различия теплопроводности и коэффициентов линейного расширения структурных составляющих), приложении внешних нагрузок (из-за различия и анизотропии механических свойств), а также нрп наклепе, наступающем в результате общего или местного перехода напряжений за предел текучести материала.  [c.152]

В пределах каждой группы материалов отмечается зависимость между коэффициентом концентрации напряжений и прочностью. Как правило, концентрация напряжений тем больше, чем выше прочность материала и чем ближе предел текучести к пределу прочности. Однако существуют отклонения от этого правила. Так, у сталей с мартенситной и троостит-ной структурой (закалка соответственно с низким и средним отпуском) концентрация напряжений меньше, чем у более мягких сталей с сорбитной и сорбитно-перлптно структурой (улучшенные и нормализованные стали).  [c.300]

При циклических режимах нагружения длительно проработавших аппаратов металл подвергается деформационному старению. При этом изменяется дислокационная структура металла и перераспределяются примесные атомы (например, азота) в кристаллах. В результате старения металла повышаются пределы прочности сГв и текучести ат(сго2), значительно снижаются пластические характеристики (относительное удлинение 5 и сужение ц/). Металл становится более хрупким, и это приводит к ускорению усталостного разрушения. Поскольку в вершине дефектов всегда наблюдается концентрация деформаций, там и старение протекает быстрее.  [c.126]

Удельная электрическая проводимость, магнитная проницаемость, коэрцитивная сила, остаточная индукпдя, твердость, влажность, напряжение, структура, химический состав, предел прочности, предел текучести, относительное удлинение, плотность и другие.  [c.177]

Исследования показали, что по химическому составу металл отливки корпуса задвижки соответствовал стали А-352 1СВ по АЗТМ и в зоне разрушения находился в охрупченном состоянии ударная вязкость КСУ 4д при пониженной температуре составляла 12 Дж/см , относительное удлинение 8 — 23,8%. Металл имел ферритно-перлитную структуру с крупными равноосными зернами и включениями карбидов внутри зерен феррита. Охрупчивание металла отливки в зоне разрушения было вызвано наличием усадочных межкристаллитных несплошностей и проявлением водородной хрупкости. По значениям прочности, твердости и относительного сужения металл отвечал требованиям нормативных документов к отливкам, предназначенным для эксплуатации в средах с высоким содержанием сероводорода. Разрушение стенки корпуса задвижки произошло в результате быстрого развития трещин, образовавшихся в металле под воздействием напряжений, превышающих предел текучести, в зоне расположения усадочных несплошностей. Наличие высоких напряжений в металле в момент, предшествовавший разрушению, подтверждалось тем, что в зоне зарождения и нестабильного роста трещин преобладал вязкий характер разрушения. Характер излома корпуса задвижки в зонах зарождения и докритического роста трещины смешанный, а в зоне лавинообразного разрушения — хрупкий с шевронным узором. Охрупчивание металла, вызванное его пониженной ударной вязкостью, способствовало лавинообразному развитию разрушения. На гболее вероятной причиной разрушения задвижки явилось, по-видимому, размораживание ее корпуса.  [c.52]


Таким образом, по достажении момента формирования зернистой структуры в системе кристаллизующегося расплава временной интервал фазового перехода первого рода считается завершенным. Качественный скачок при образовании зернистой стр)тсгуры, трактуемый как фазовый переход первого рода, визуально отображается в потере системой текучести, приобретении устойчивой формы слитка и сохранении ее при деформациях.  [c.92]

При достижении очередной критической плотности дислокаций рщ, текучесть материала оказывается достаточной для того, чтобы в нем могло происходить вращение дислокационных и дисклинационных структур (ротационный характер перемещения). При этом снимается пространственная разориентация дисклинаций в клубках и скоплениях и возможно их более полное объединение. Чтобы сохранить пространственную сплошность металл вынужден образовывать периодическую структуру. Это приводит к перестройке структуры металла и формированию ячеистьа или сетчатых структур (рис. 70, в). Границы ячеистой структуры начинают притягивать дислокации, которые продвигаются к ним для взаимного объединения. Толщина границ со временем постепенно увеличивается. Плотность дислокаций на границах увеличивается, тогда как в теле самих ячеек она становится практически равной первоначальной ( 10 -10 см ) Средняя плотность дислокаций в металле на этапе возникновения ячеистой структуры достигает 10 °  [c.110]

При достижении очередной критической плотности дис.чокацпй р,р текучесть материала оказывает ся достаточной для того, чтобы в не.м могло. происходить вращение дислокационных и дисклинационных структур (ротационный характер перемещения). При этом снимается пространственная  [c.287]

С использованием методов растровой электронной микроскопии, метода скользящего пучка рентгеновских лучей и измерения микротвердости исследованы процессы самоорганизации дислокационной и субаереиной структуры в приповерхностных слоях и внутренних объемах технически чистого рекристаллизованного Мо при статическом растяжении и влияние магнетроиного покрытия Мо-45, 8Re-0,017 на особенности протекания этих процессов вблизи поверхности. Исследования проводили на образцах, растянутых до деформаций, соответствующих пределу пропорциональности, нижнему пределу текучести н пределу прочности.  [c.185]

Мультифрактмьные характеристики структур границ зерен, предел текучести От. МПа и средний размер зерна d, мм аустецитных Ni-Мп-сталей  [c.205]

Нормализацией обеспечивается мелкодисперсная структура со стабильными и высокими механическими свойствами (предел прочности при растяжении, предел текучести, удлинение, сужение и ударная вязкость). Время выдержки при указанных температурах норм ипизационного отжига зависит от марки стали. Для углеродистых сталей ориентировочно принимают минимальное время выдержки из расчета 1 ч на каждые 25 мм толщины стенки отливки. Для легированных сталей время выдержки увеличивают в несколько раз.  [c.366]

Расггространение фронта Людерса - Чернова на стадии циклической текучести связано с процессами интенсивного изменения дислокационной структуры в областях металла, где этот фронт уже прошел (происходят процессы деформационного упрочнения в локальных объемах металла). Это яв-  [c.26]

Рис. 19. Дислокационные структуры, формирующиеся в процессе усталости желета при комнатной температуре на разных етадиях а циклическая микротекучесть б - текучесть в, г - деформационное упрочнение Рис. 19. <a href="/info/1785">Дислокационные структуры</a>, формирующиеся в <a href="/info/167777">процессе усталости</a> желета при комнатной температуре на разных етадиях а <a href="/info/578928">циклическая микротекучесть</a> б - текучесть в, г - деформационное упрочнение
Скачки молекул совершаются хаотически, новое место никак не предопределено прежним. Непрерывно и в большом количестве совершающиеся скачкообразные переходы молекул с места на место обеспечивают их диффузию и текучесть жидкостей. Если на границе жидкости приложена сдвигающая сила, то, как и в газах, появляется преимущественная направленностБ скачков н возникает течение жидкости в направлении дейст рия силы. Для большинства жидкостей сила при этом может быть любой сколь угодно малой. Однако существуют жидкости с настолько упорядоченной молекулярной структурой, что требуется некоторое  [c.9]


Смотреть страницы где упоминается термин Структура текучести : [c.166]    [c.200]    [c.209]    [c.255]    [c.267]    [c.281]    [c.21]    [c.19]    [c.353]    [c.204]    [c.204]    [c.207]    [c.209]    [c.307]    [c.365]    [c.26]    [c.346]   
Пластичность и разрушение твердых тел Том1 (1954) -- [ c.578 , c.580 , c.590 ]



ПОИСК



Структура, получающаяся при охлаждопш-г, и структура текучести

Текучесть



© 2025 Mash-xxl.info Реклама на сайте