Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Классическая теория упругости сингулярные решения уравнений

Фундаментальные сингулярные решения уравнений теории упругости играют такую же важную роль в алгоритмах МГЭ, как и их аналоги в рассмотренных ранее задачах о потенциальном течении. Классическим результатом, составляющим основу всего последующего анализа, является решение, которое определяет поле смещений Ui(x) при действии единичной сосредоточенной силы б]( ) в упругом теле. В условиях плоской деформации [31  [c.101]


Сингулярные решения уравнений классической теории упругости  [c.75]

При исследовании напряженно-деформированного состояния тел с трещинами широкое применение нашел метод сингулярных интегральных уравнений. Он особенно удобен и эффективен при решении плоских задач теории упругости для тел сложной геометрии, содержаш,их включения, отверстия и трещины произвольной формы. Впервые [И, 137, 181] сингулярные интегральные уравнения использовались при исследовании распределения напряжений около прямолинейной трещины (или полосы пластичности) в некоторых классических областях (полуплоскость, полоса, бесконечная плоскость с круговым отверстием). Система произвольно ориентированных прямолинейных трещин изучалась в работах [21, 22, 70]. Рассматривался также случай криволинейных трещин в бесконечной плоскости [16, 40, 74, 92, 117]. В работах [94—96] основные граничные задачи для многосвязной области, содержащей изолированные криволинейные разрезы и отверстия произвольной формы, сведены к системе сингулярных интегральных уравнений по замкнутым (контуры отверстий и внешняя граница) и разомкнутым (разрезы) контурам. Эти результаты обобщены на случай, когда разрезы выходят на границу тела, а также соединяют отверстия между собой и (или) с внешней границей [97]. К настоящему времени появилось большое количество работ, в которых методом сингулярных интегральных уравнений изучаются плоские задачи теории трещин. Обзор этих исследований имеется в работах [5, 32, 45, 54, 70, 95, 100].  [c.5]

Анализ разрушения металлических конструкций и многочисленные экспериментальные данные показывают, что в реальных условиях эксплуатации в нагруженном материале возле трещин могут возникать значительные пластические деформации, охватывающие области, сравнимые с характерными размерами концентратора напряжений (трещины, выреза, включения) или рассматриваемого тела. Описание процесса разрушения при значительных пластических деформациях требует решения соответствующей упругопластической задачи для тела с трещинами. Обстоятельный обзор таких исследований выполнен в работе [12]. Применение классических методов теории пластичности во многих случаях является малоэффективным и не всегда учитывает некоторые характерные особенности протекания процесса пластического деформирования, в частности локализацию деформаций в тонких слоях и полосах. В случае тонких пластин (плоское напряженное состояние) такие деформации локализуются в тонких слоях (полосах пластичности) на продолжении трещин и достаточно хорошо описываются с помощью б -модели, когда полосы пластичности моделируются скачками нормальных смещений [65. При плоской деформации зоны пластичности возле трещин во многих случаях также локализуются в тонких слоях (полосах скольжения), выходящих из вершины трещины под некоторыми углами к ней [45, 120, 159, 180]. Полосы скольжения при этом моделируются скачками касательных смещений. В результате решение упругопластической задачи для тела с трещинами сводится к решению упругой задачи для тела с кусочно-гладкими (ломаными) или ветвящимися разрезами (см. третью главу), на берегах которых заданы разрывные нагрузки. При этом длина зон пластичности и их ориентация заранее неизвестны и должны быть определены в процессе решения задачи. Для таких исследований может быть успешно применен метод сингулярных интегральных уравнений, развитый в предыдущих главах, что и проиллюстрировано на конкретных примерах.  [c.219]


Купрадзе показал, что в случае сингулярных интегральных уравнений теории упругости классическая теория Фредгольма остается в силе. В уже цитированной книге он дал доказательство теоремы единственности и теоремы существования решения как для внутренней, так и для внешней задачи.  [c.617]

Теоремы единственности играют особо важную роль для математического изучения задач физики и механики без исследования единственности (или неединственности) решения математической задачи нельзя утверждать, что полученное решение действительно описывает исследуемое физическое состояние. Кроме того, мы увидим, что интересующие нас задачи классической теории упругости, микрополярной упругости и термоупругости приводят к определенным системам линейных сингулярных интегральных уравнений и для этих систем остается в силе классическая теория интегральных уравнений Фредгольма второго рода. Благодаря этому, из теорем единственности мы получим также теоремы существования.  [c.120]

Н, Губера, Р. Д. Миндлина, А. Синьорини. Разработанные ими методы геории функций комплексной переменной и теории сингулярных интегральных уравнений оказались достаточно эс ективными для решения смешанных задач упругости. Однако круг рассмотренных примеров при этом ограничивался в основном классическими смешанными задачами о внедрении жесткого индентора (штампа) в бесконечную или полубех конечную область.  [c.9]

Вопрос о том, относить те или иные задачи к классическим и неклассическим, является су0ъективным. Классическими будем считать задачи динамической механики разрушения, рассматриваемые в рамках идеализированной линейно-упругой модели хрупкого динамического разрушения, которые допускают точные или приближенные аналитические решения. Это задачи для областей, содержащих бесконечно удаленные точки (пространство, полупространство, слой в трехмерном случае плоскость, полуплоскость, полоса в двумерном). Такие задачи могут быть сведены к смешанным краевым задачам для уравнений с частными производными. Для их решения применяются простые и хорошо разработанные методы интегральные преобразования, дуальные интегральные уравнения, теория функций комплексного переменного, метод Винера — Хопфа, интегральные уравнения Фред-гольма второго рода, сингулярные интегральные уравнения. Эти методы подробно изложены в известных курсах математической физики 121, 56, 208, 209, 249, 259, 260 и др.], а также более специальных руководствах [265, 266, 278, 288, 299, 313, 350, 352 и др.].  [c.35]


Смотреть страницы где упоминается термин Классическая теория упругости сингулярные решения уравнений : [c.279]    [c.148]    [c.149]    [c.178]   
Трехмерные задачи математической теории упругости и термоупругости Изд2 (1976) -- [ c.75 , c.83 ]



ПОИСК



Газ классический

К упругих решений

Классическая теория упругости

ОСНОВНЫЕ СИНГУЛЯРНЫЕ РЕШЕНИЯ Фундаментальные решения уравнений классической теории упругости

Решения сингулярные уравнений теории

Решения сингулярные уравнений теории упругости

Сингулярность

Сингулярные решения

Теории Уравнения

Теория классическая

Теория упругости

Упругость Теория — см Теория упругости

Уравнения Уравнения упругости

Уравнения теории упругости

Уравнения упругого КА

Уравнения упругости



© 2025 Mash-xxl.info Реклама на сайте