Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сила подъемная Архимеда

Условия плавания тел. Закон Архимеда нашел большое практическое применение, на нем основана теория плавания тел. Из закона следует, что на тело, погруженное в жидкость, в итоге действуют две силы вес тела G, приложенный в центре тяжести тела и направленный вниз, и подъемная сила приложенная в центре водоизмещения и направленная вверх.  [c.271]

Величина направлена в сторону, противоположную силе тяжести, и называется гидростатической подъемной силой, или силой Архимеда. Сила Архимеда приложена к точке, которая является центром тяжести вытесненной телом жидкости. Эта точка называется центром водоизмещения, или центром давления.  [c.31]


Выражение (1.45), представляющее собой закон Архимеда, может быть сформулировано следующим образом подъемная сила, действующая на погруженное в жидкость тело, равна весу жидкости в объеме этого тела.  [c.27]

Из закона Архимеда следует, что на тело, погруженное в жидкость, в конечном счете действуют две силы сила тяжести (вес тела) G и подъемная ( архимедова ) сила R (рис. 36).  [c.54]

Применительно к теории плавания тел закон Архимеда может быть сформулирован следующим образом. Тело, погруженное в жидкость, находится под действием подъемной силы гидростатического давления, направленной снизу вверх и равной весу объема жидкости, вытесненного телом.  [c.59]

Мы получили закон Архимеда на тело, погруженное в покоящуюся тяжелую жидкость, со стороны жидкости действует подъемная сила, равная — —  [c.13]

Если сила Архимеда меньше веса тела, то тело, погруженное в жидкость и предоставленное само себе, тонет если сила Архимеда больше веса, то всплывает. В рамках квазистатического рассмотрения тело всплывает до тех пор, пока его вес не сравняется с гидростатической подъемной силой.  [c.14]

Для тел, плавающих на поверхности воды, гидростатическая подъемная сила также равняется силе Архимеда. Действительно, для вычисления этой силы можно ввести замкнутую поверхность 2, состоящую из смоченной поверхности тела и площади сечения объема тела горизонтальной плоскостью я, совпадающей с уровнем покоящейся жидкости. На поверхности этого сечения тела давление следует считать постоянным и равным Ро — давлению на свободной поверхности жидкости.  [c.14]

Наличие гидростатической подъемной силы широко используется в технике. Эта сила поддерживает суда, плавающие на поверхности воды, удерживает подводные лодки на нужной глубине, удерживает в воздухе аэростаты и дирижабли и т. д. На основе закона Архимеда построены приборы для измерения плотности жидкости — ареометры, измерители жирности молока — лактометры, концентрации спирта — спиртометры и т. п.  [c.14]

Рис. 5. На тело А действует подъемная сила Архимеда, на тело В действует сила, прижимающая его ко дпу, если доступ жидкости под тело невозможен. Рис. 5. На тело А действует подъемная сила Архимеда, на тело В действует сила, прижимающая его ко дпу, если доступ жидкости под тело невозможен.

Если поместить тело в поток жидкости или газа, то на тело будут действовать силы, связанные, во-первых, с неравномерностью распределения гидростатического давления (сила Архимеда) и, во-вторых, с неравномерностью распределения динамического давления по поверхности тела. Во многих случаях, например при полете самолетов, динамическая подъемная сила оказывается во много раз больше гидростатической.  [c.29]

Несущественность гидростатических давлений по сравнению с динамическими в аэродинамике самолетов можно еще ощутить с помощью следующих соображений. При установившемся горизонтальном полете самолета полная подъемная сила, обусловленная распределением полных давлений, равна, конечно, весу самолета, а сила Архимеда, обусловленная распределением по поверхности самолета гидростатических давлений, равна только весу воздуха с плотностью, отвечающей высоте полета, в объеме самолета. Ясно, что сила Архимеда меньше тысячных долей полной подъемной силы, равной весу самолета.  [c.30]

При движении больших по объему тел с малыми скоростями, например, воздушных шаров и дирижаблей в воздухе, кораблей и подводных лодок в воде, роль динамических давлений в создании подъемной силы незначительна. При движении в воде, плотность которой в 800 раз больше плотности воздуха, сила Архимеда оказывается достаточно большой, и именно эта сила удерживает корабль или подводную лодку. Заметим, что за счет плотности динамические давления при движении в воде  [c.30]

В уравнение (6.42) параметрический критерий р"1р не введен, так как при кипении в большом объеме (на погруженной в жидкость теплоотдающей поверхности) его влияние проявляется через подъемную силу, следовательно, отражается числом Архимеда испарения, в котором безразмерное значение подъемной силы выражено в форме  [c.188]

Левая часть уравнения (8-25) представляет собой подъемную силу, создаваемую потоком газов по отношению к частице, а правая часть — вес частицы с поправкой на вытесняемый объем газов (по закону Архимеда).  [c.236]

Пловучесть тела определяется законом Архимеда, согласно которому давление жидкости на погруженное в нее тело направлено по вертикали снизу вверх и сила давления Р (подъемная сила) по величине равна весу жидкости в объеме тела  [c.118]

Впрочем, это не имеет значения, так как Бенедетти, несомненно, оригинально использовал основные понятия, которые ввел Архимед (гидростатическая подъемная сила, центр тяжести). В противоположность Аристотелю, Бенедетти характеризует падение тел с помощью разности весов (веса тела и веса равного ему объема окружающей среды), а не с помощью их отношения. Это сопровождается значительным изменением в том, что касается определения траектории естественного движения при падении. Так, по Бенедетти, вертикаль уже не является больше путем, который ведет пилигрима прямо к его гнезду . Это—кратчайший путь между двумя сферическими поверхностями, центры которых совпадают с центром Земли, а природа всегда действует ио кратчайшим путям . Этот принцип сформулирован явным образом. И если для объяснения падения тяжелых тел автор еще обращается к природе , то это уже — природа , лишенная всякого анализа и подчиненная некоему теоретическому закону минимума.  [c.76]

Тело, погруженное полностью или отчасти в жидкость (или газ), испытывает действие подъемной силы со стороны окружающей жидкости или газа. Еще Архимедом (III век до н. э.) был найден основной закон всякое тело, погруженное в жидкость (или газ), испытывает со стороны окружающей среды действие силы, равной весу вытесненной телом жидкости (или газа) эта сила направлена вверх и проходит через центр масс вытесненной жидкости (или газа).  [c.343]

Гидродинамическое давление. При установившемся движении жидкости теорема Бернулли позволяет еще больше выяснить характер давления. В покоящейся жидкости в каждой точке имеется гидростатическое давление рн, и закон Архимеда утверждает, что на тело, погруженное в жидкость, действует выталкивающая сила, равная весу вытесненной им жидкости. Частицы жидкости также подчиняются этому закону, и поэтому они находятся в равновесии под действием гидростатического давления рн и силы тяжести. Отсюда следует, что величина рн/е + Й Л является константой во всей жидкости. Если жидкость движется, то подъемная сила еще действует, так что если мы напишем  [c.22]


По закону Архимеда со стороны жидкости на цилиндр действует подъемная сила, равная na Qg. Рис. 165. Отсюда следует, что действующая на цилиндр вертикальная сила равна na (a—Q)g и направлена вниз. Если обозначить через у глубину жидкости, отсчитываемую по вертикали от поверхности, то, согласно п. 9.22, уравнение движения цилиндра имеет вид  [c.232]

Сила вытеснения (подъемная сила) по закону Архимеда  [c.39]

Таким образом, по закону Архимеда сила, с которой жидкость действует на погруженное в нее тело, равна весу жидкости в объеме погруженного тела. Эта сила называется Архимедовой подъемной силой.  [c.55]

При изучении конвекции важное значение приобретает критерий Архимеда, применяемый в тех случаях, когда необходимо учитывать подъемную силу нагретого воздуха. Этот критерик представляет собой отношение подъемной силы  [c.314]

Таким образом, сила давления покоящейся жидкости на погруженное в нее тело направлена вертикально вверх и равна весу жидкости в объеме тела. Этот результат составляет содержание закона Архимеда сила А называется архимедовой или гидростатической подъемной силой. Если О — вес тела, то его плавучесть определяется соотношением сил А и 0. При О > А тело тонет, при О < А — всплывает, при О = А — плавает в состоянии безразличного равновесия. Следует иметь в виду, что линии действия сил С и Л могут не совпадать, так как линия действия веса С проходит через центр тяжести тела, а линия действия архимедовой силы А — через центр его объема. При неравномерном распределении плотности тела может появиться момент, способствующий опрокидыванию тела.  [c.84]

Закон Архимеда, выведенный на примере прямоугольной призмы, справедлив для тел любой конфигурации, а также тел, частично погруженных в жидкость. Сила часто называется архимедовой или подъемной силой. Она приложена в центре тяжести вытесненного объема жидкости, который называется центром водоизмещения. Центр водоизмещения обычно не совпадает с центром тяжести тела, исключение составляют однородные тела.  [c.271]

Заметим, что предположение о пропорциональности между прогибом и реакцией основания выполняется совершенно строго для плаваюгцей балки прямоугольного поперечного сечения. Здесь реакция представляет собою подъемную силу Архимеда.  [c.110]

Носители гравистатической энергии — тела, способные погружаться в воду под действием силы тяжести и подниматься вверх под действием подъемной силы Архимеда, а также тела легче воздуха.  [c.42]

Таким образом, в случае свободной конвекции тепла взамен числа Fr, определяемого формулой (4-27) и не отражающего действия подъемной силы, надлежит пользоваться модифицированным числом, а именно комплексом w /gLiiAT. которому присвоено название числа Архимеда. Здесь коэффициент термического расширения р считается постоянным, отнесенным к характерной  [c.102]

Аг Критерий Архимеда Соотношение между подъемном (Архимедовой) силой и инерционной силой в неизотермическом потоке  [c.37]

АРХИМЕДА ЗАКОН — закон статики жидкостей и газов, согласно к-рому на всякое тело, погружённое в жидкость (или газ), действует со стороны, 9Toii жидкости (газа) выталкивающая сила, равная весу вытесненной телом жидкости (газа), направленная по вертикали вверх и приложенная к центру тяжести вытесненного объёма. Выталкивающую силу наз. тайнее архимедовой или гидростатич. подъемной силой. Давление, действующее на погружённое в жидкость те.ю, увеличивается с глубиной погружения, позтому сила давления на ниж. элементы поверхности тела больше, чем на верхние. В результате сложения всех сил, действующих на каждый элемент поверхности, получается равнодействующая F, направленная по вертикали вверх. Если же тело плотно лежит на дне, то давление жидкости только сильнее прижимает его ко дну.  [c.123]

Из изложенного способа вычисления вертикальной составляющей силы гидростатического давления вытекает закон Архимеда, утверждающий, что на погруженное тело действует подъемная сила плавучести (выталкивающая сила), равная весу вытесненной жидкости. Интеграл от hdSz, взятый по поверхности полностью погруженного тела, равен объему тела. Обозначая объем через Wn, получаем для силы плавучести Fn выражение  [c.40]

Равенство (109) показывает, что главный вектор сил давлени.я жидкости на поверхность погруженного в нее тела равен по величине весу жидкости в объеме тела и направлен в сторону, противоположную силе веса. Это — закон Архимеда. Вектор 2 называют архимедовой силой или гидростатической подъемной силой в знак того, что эта сила стремится вытолкнуть тело  [c.82]

Изложенные выше результаты находят себе различные про стые применения. Одно из них относится к вычислению началь ного ускорения, получаемого наполненным водородом сферическим баллоном, который сразу освобожден от канатов. Предположим, что масса баллона составляет 7ю массы вытесненного им воздуха. Человек, не знающий о кажущейся массе, мог бы проделать следующие ошибочные вычисления. По закону Архимеда, полная подъемная сила равна произведению 9g на массу баллона поэтому (так можно было бы подсчитать) начальное ускорение должно равняться g. А в случае сферического бал-  [c.197]

Я хочу ограничиться описанием динамического полета, т. е. рассмотреть летательный аппарат, который тяжелее воздуха. Развитие летательных аппаратов легче воздуха проходило более-мепее независимо, но крайней мере в том, что касается свободного аэростата. Принцип поддержания с номош,ью гидро- или аэростатической подъемной силы понимали с тех пор, как Архимед сформулировал свой знаменитый закон. Удачные эксперименты братьев Монгольфье предшествовали любым серьезным экспериментам, нацеленным на динамический полет.  [c.15]


Равенство (94) показывает, что главный вектор сил давления жидкости на поверхность погруженного в нее тела равен по величине весу жидкости в объеме тела и направлен в сторону, противоположную силе веса. Это—классический закон Архимеда. Силу R иногда называют архимедовой или гидростатической подъемной силой в знак того, что эта сила стремится вытолкнуть тело из жидкости, заставить его всплыть. Тяжелое тело, погруженное в жидкость, теряет в своем весе столько, сколько весит вытесненная телом жидкость.  [c.119]

Тело, погруженное (полностью или частично) в жидкость, испытывает со стороны жидкости суммарное давление, направленное снизу вверх и равное весу жидкости в объеме погруженной части тела W norp (закон Архимеда). Это давление называется силой вытеснения или подъемной силой  [c.18]

Решение. Подъемная сила воздуха Рвыт, действующая на щар по закону Архимеда, уравновешивается весом шара О я весом газа в нем ргё [см. формулу (1.15)]  [c.40]

Этот закон впервые был установлен за 250 лет до нашей эры Архимедом и известен под названием закона Архимеда. Он имеет большое значение при решении задач, связанных с плаванием тел на нем, в частности, основана теория плавания корабля. Силу давления Я при этом часто называют архимедовой подъемной силой.  [c.53]

Суммируя элементарные подъемные силы, получаем полную подъемную силу Р . Из зависимости (1.27) следует, что подъемная сила Рц равна весу жидкости, вытесненной погруженньш в нее телом, и направлена по вертикали снизу вверх. Это положение носит название закона Архимеда. На этом законе основана теория плавания тел. Подъемная сила приложена в центре погруженной части тела, называемом центром водоизмещения.  [c.23]


Смотреть страницы где упоминается термин Сила подъемная Архимеда : [c.165]    [c.141]    [c.54]    [c.59]    [c.13]    [c.42]    [c.31]    [c.140]    [c.473]   
Теоретическая гидромеханика Часть1 Изд6 (1963) -- [ c.473 ]



ПОИСК



V подъемная

Архимед

Подъемная сила

Сила Архимеда



© 2025 Mash-xxl.info Реклама на сайте