Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Конденсированная фаза

Для смеси газа (которому вместо цифрового будет соответствовать буквенный индекс g) с конденсированной фазой (которой будет соответствовать индекс Z) следует принимать, что из-за существенно более высокой теплопроводности конденсированной фазы теплоту фазового перехода выделяет пли затрачивает именно конденсированная ) фаза (см. 7 гл. 5), что для испарения (Z g) и конденсации (g I) может быть записано в виде  [c.41]

Т. е. определяется отклонением от температуры насыщения температуры конденсированной фазы. Тогда аналогично (1.4.14) имеем линейное феноменологическое уравнение кинетики  [c.47]


Таким образом, уравнения для сферически-симметричного движения, теплопроводности и диффузии в газовой и конденсированной фазах (5.5.1) иг (5.5.13) с учетом (5.5.2), (5.5.7), (5.5.9),  [c.267]

Однако в отличие от гомогенных систем для гетерогенных константы равновесия обычно выражаются в парциальных давлениях Kf и не содержат парциальных давлений твердых или жидких (конденсированных) фаз, если эти фазы представляют собой чистые вещества постоянного состава.  [c.280]

Однако если реагирующие вещества находятся в состоянии раствора в какой-либо конденсированной фазе (жидкий или твердый раствор), то на равновесие обратимых реакций будут очень сильно влиять активные концентрации в растворе.  [c.281]

Имеются различные варианты метода гетерогенных равновесий. Все они основаны на том, что термодинамические функции исследуемого вещества в одной из равновесных фаз должны быть известными. Такой фазой часто служит газ при давлении, достаточно низком, чтобы его свойства хорошо описывались законами идеальных газов. Условия диффузионного равновесия i-ro компонента в исследуемой конденсированной фазе (растворе, соединении, индивидуальном веществе) и в смеси идеальных газов (G) согласно (14.15)  [c.134]

Как было описано выше, процесс кристаллизации жидкого расплава начинается в тот момент, когда в кристаллизующейся системе начинают формироваться частицы новой конденсированной фазы, имеющие радиус не менее определенного критического значения г . Частицы с радиусом г< Гс неустойчивы и исчезают, так как работа, необходимая для образования их поверхности по мере увеличения радиуса зародыша г, нарастает быстрее, чем  [c.81]

В последние десятилетия было установлено, что структура вещества, образующегося в условиях, далеких от термодинамического равновесия, может быть описана при помощи математического аппарата фрактальной геометрии. Поэтому мы можем предполагать, что структура вещества, составляющего критический зародыш новой конденсированной фазы, образующейся в процессах кристаллизации сталей и сплавов, фрактальна и является, по всей видимости, фрактальным кластером. Можно привести несколько подтверждений  [c.82]

ИЕРАРХИЧЕСКАЯ МОДЕЛЬ РОСТА КОНДЕНСИРОВАННОЙ ФАЗЫ В ПРОЦЕССЕ КРИСТАЛЛИЗАЦИИ СТ.АЛЕЙ ИЗ РАСПЛАВА  [c.84]

В реальности же прекращение роста фрактальных кластеров наступает еще раньше при достижении в системе критических значений такого параметра, как концентрация кластеров, поэтому формирование граничного слоя фрактальных частиц конденсированной фазы остается незавершен-  [c.88]


На этапе завершения роста первичных фрактальных кластеров в системе возникает конкуренция между процессами дальнейшего роста кластеров по. механизму кластер-частица (Л/,/4-механизм) и механизму кластер-кластерной агрегации (СО-механизм). Данный временной интервал с наличием конкурирующих ОЬА/ССА-механизмов агрегации частиц новой конденсированной фазы можно отождествить со структурным фазовым переходом второго рода (рис. 63), при котором происходит дальнейшее уплотнение системы.  [c.89]

Адгезия - явление соединения приведенных в контакт поверхностей конденсированных фаз.  [c.147]

Иерархическая модель роста конденсированной фазы в процессе кристаллизации сталей га расплава  [c.125]

С другой стороны, наступление момента конкуренции процессов Z)iA 4-сборки можно интерпретировать как приближение в системе к порогу перколяции в отношении напряженности и взаимодействия локальных силовых полей от сформированных фрактальных кластеров. Достижение же критического значения концентрации фрактальных кластеров конденсированной фазы обусловливает перколяционную структуру электрических взаимодействий между ними. Для систем, погруженных в пространство с евклидовой размерностью Е=Ъ фрактальная размерность частиц, соответствующая порогу перколяции, Df 2,5 [35]. В условиях стационарного воздействия на систему отрицательного температурного градиента (охлаждения системы внешней средой) описанное состояние системы катализирует таким образом дальнейший процесс агрегации по ССЛ-механизму. Подобным образом развивается волнообразный цикличный характер дальнейшей цепочки фазовых переходов второго рода (рис. 3.13), обусловливающий наиболее эффективный путь диссипации энергии посредством структурообразования по иерархическому принципу в открытой неравновесной системе охлаждаемого расплава.  [c.135]

Z - координационное число (число соседей молекулы) в объеме конденсированной фазы.  [c.294]

Для случая газовзвеси с малой объемпой концентрацией конденсированной фазы  [c.49]

Pa MOTpn. t другой крайний случай (1.5.10), когда можно пренебречь массовым содержанием газа (a i <С1) из-за pi< p2 но объемная концентрация конденсированной фазы не мала ( a ai). Этот случай реализуется, в частности, для жидкости с пузырькамн газа. При этом  [c.50]

О внизу от, [ечает некоторое начальное состояние, относительно которого отсчитываются все изменения ij — энтальпия j — теплоемкость конденсированной фазы g п Rg— теплоемкость (при постоянном давлении) и газовая постоянная рассматриваемого газа.  [c.246]

Здесь и далее для обозначения фаз влгесто цифровых индексов внизу будут использованы буквенные i = g м I, относящиеся соответственно к параметрам газовой и жидкой (конденсированной) фаз, а штрихи вверху, относящиеся к микропараметрам, будут опущены.  [c.264]

Горение мета.ч.чов. Горение. Л1еталлически.х порошков, используемых в ракетных двигателях, происходит при высокой температуре. Этот процесс характеризуется чрезвычайно большой скрытой теплотой процесса и образованием твердых продуктов сгорания [290]. Присутствие реагирующих компонентов и продуктов реакции в конденсированной фазе определяет важную роль гете-рогенны.х реакций в процессе горения. Воспламенению металла обычно предшествует реакция на повер.хности или в окисном слое. Глассман [771] предложил простой критерий, позволяющий опре-.делпть, где происходит горение — на поверхности и.чи в паровой фазе.  [c.113]

Браун [77] по скорости перемещения неоднородностей в продуктах истечения из сопла, измеренной с помощью скоростной киносъемки, определил также скорость конденсированной фазы на срезе сопла. Влияние этих скоростей, отнесенных к расчетным скоростял газа, на удельную тягу показано на фиг. 7.16. Теоретическая кривая получена в предположении равновесного течения на входе в сопло и изэнтропийного расширения [9] и занижена на 1%, чтобы учесть тепловые потери. Сопла А, Б, В имеют следующие характеристики  [c.322]

Задача о диффузии в газовой среде решается методами кинетической теории газов, так как в этом случае не требуется особой энергии активации для проникновения одного газа в другой. Если диффузия происходит в конденсированных фазах (жидкая, твердая), то в этом случае для перемещения частиц диффузанта требуется энергия активации, так как в жидкости и в кристалле частицы между собой связаны значительной энергией межатомного или межмолекулярного взаимодействия, находясь на малых расстояниях друг от друга. Скорость диффузии в этом случае будет значительно меньше.  [c.296]


Многие термодинамические свойства, в том числе и химические потенциалЕл, отсчитываются от условного уровня (см. 10). Этот уровень задается выбором стандартного состояния вещества. Для конденсированных фаз таким состоянием может служить, например, набор свойств чистого компонента при той же температуре, что и изучаемая фаза. При равновесии t-ro компонента в стандартном состоянии (°) и в паре (G) аналогично  [c.135]

Иными словами, по мере дальнейшего роста частиц конденсированной фазы часть энергии, выделяющейся при образовании связей между атомами, не уносится, а аккумулируется в кластерах [68]. Данный факт является одной из причин стабилизации температуры во время фазовых переходов первого рода. Это снижает тенденцию активного присоединения атомов расплава к фрактальным частицам новой фазы. За счет этого, в свою очередь, снижается плотность расположения атомов в кластерах по мере их роста, увеличиваются размеры и количество пор на периферии растущих фрактальных кластеров. Итак, непрерывный рост фрактальных кчастеров в системе кристаллизующегося жиокого расплава не может продолжаться бесконечно.  [c.88]

При этом в целом по системе при переходе к механизму кластер-кластерной афегации за один акт роста возникает меньшее количество межчастичных связей в единицу времени, чем на предыдущем уровне структурирования системы (Т)ЬА-механизм). Это происходит за счет меньшего значения концентрации в системе структурных элементов второго уровня (фрактальных кластеров) по сравнению с количеством структурообразующих единиц первого уровня (отдельных атомов из расплава). Следствием уменьшения во времени (или при переходе с масштаба на масштаб) числа возникающих в системе связей между фрактальными частицами новой конденсированной фазы и количества выделенной энергии является уменьшение производства энтропии в целом внутри системы. Это полностью соответствует поведению неравновесных самоорганизующихся по иерархическому принципу систем.  [c.91]

В предыдущем разделе мы выяснили механизм образования поликри-сталлических сплавов путем кристаллизации из расплавов. На стадии завершения фазового перехода первого рода с образованием зеренной структуры сплавов достигается лишь формирование уплотненной конденсированной фазы, структурированной по иерархическому принципу и имеющей набор масштабных уровней структурных элементов. При этом структурные элементы твердого сплава после завершения кристаллизации на всех масштабных уровнях характеризуются фрактачънъш расположением составляющих элементов. Кристаллическая упорядоченность внутренних областей структуры на данном этапе формирования сталей и сплавов отсутствует.  [c.94]

Существование эффекта посткристаллизации органически связано с описанным выше фрактальным строением критического зародыша конденсированной фазы. Как на ранних этапах образования новой фазы, так и на стадии собственно кристаллизации, морфология твердого сплава до начала процесса рекристаллизации характеризуется фрактальной структурой - в частности, благодаря фрактальному характеру распределения пор.  [c.95]

Как было описано выше, процесс кристаллизации жидкого расплава начинается в тот момент, когда в кристаллизующейся системе начинают формироваться частицы новой конденсированной фазы, имеющир радиус не менее определенного критического значения Частицы с радиусом г< неустойчивы и исчезают, так как работа, необходимая для образования их поверхности по мере увеличения радиуса зародыша г, нарастает быстрее, чем происходит снижение величины объемной энергии жидкой фазы при ее затвердевании. При увеличении частиц до размеров, превышающих Гс, их дальнейший рост приводит к общему уменьшению энергии системы и является энергетически выгодным. Выигрыш в энергии тем больше, чем крупнее размер образующейся частицы твердой фазы. Поэтому такие часггицы устойчивы и растут самопроизвольно.  [c.121]

При кристаллизаш и система не обменивается веществом с окружающей средой, поэтому ее общее koj tbo узлов N = onst. Из соотношения (3.12) видно, гго при постоянном N рост химической фрактальной размерности системы приводит к снижению химической длины /. Когда химическая размерность достигает определенного критического значения 1, достигается критическое значение которое соответствует "химическому расстоянию" между частицами в оолее плотной конденсированной фазе. С этого момента все составляющие систему частицы лавинообразно стремятся скон-  [c.128]

Первой и наиболее известной двухжидкостной моделью является модель Гортера и Казимира [25], которая в своей обычной форме приводит к зависимости теплоемкости от температуры по закону Г .Коппе [26] предложил специальную форму двухжидкостной модели, базирующуюся на теории Гейзенберга. При этом теория Коппе не связана с взаимодействием, которое обусловливает конденсацию, и может иметь большую область применения. Теория Гинзбурга [17,27] основана на модели с энергетической щелью, согласно которой для возбуждения электрона из конденсированной фазы необходима некоторая минимальная энергия г Дальнейшие обобщения, включающие другие теории как специальные случаи, обсуждались Коппе [26], Бендером и Гортеро.м [28], а также Маркусом и Максвеллом [29].  [c.686]

Основные уравнения теории Лондона. Уравнения Лондона связывают плотность тока в некоторой точке с электрическим и магнитным полем н той же точке. Следует проводить различие между сверхпроводящим током jg, связанным с диамагнитными свойствами конденсированной фазы, и нормальным током j, , который главным образом обусловлен движеписм пнднви-дуалыгых возбужденных частиц. Полная плотность тока равна  [c.691]


Смотреть страницы где упоминается термин Конденсированная фаза : [c.238]    [c.267]    [c.217]    [c.294]    [c.159]    [c.87]    [c.90]    [c.115]    [c.122]    [c.129]    [c.132]    [c.135]    [c.140]    [c.709]   
Термодинамика (1970) -- [ c.225 ]



ПОИСК



Иерархическая модель роста конденсированной фазы

Клабуков В. Я. К определению степени черноты конденсированной фазы высокотемпературных газовых смесей

Конденсированные фазы (гетерогенные системы — газ, жидкость, твердая среда)

Моделирование процессов переноса в конденсирован ной фазе

Особенности расчета кривой давления в камере сгорания и проектирования двигателя при наличии конденсированной фазы в продуктах сгорания

П фазы

Реакции разложения конденсированной фазы

Реакции, продукты которых образуют самостоятельную конденсированную фазу

Система, содержащая конденсированные фазы

Уравнение внутренней энергии конденсированной фазы



© 2025 Mash-xxl.info Реклама на сайте