Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Железо нормальный электродный потенциал

Олово обладает недостаточно высокой механической прочностью. Нормальный электродный потенциал олова Sn 5=i Sn- +-f 2е равен — 0,136 в. Пассивируется олово слабо. Коррозионная стойкость олова в атмосферных условиях, в дистиллированной, пресной и соленой воде очень высока. Этим объясняется широкое применение олова для защиты от коррозии в воде и в атмосферных условиях железа, потенциал которого более отрицателен, чем у олова. Однако так называемая белая (луженая) жесть во влажной загрязненной атмосфере быстро разрушается вследствие пористости защитного оловянного слоя.  [c.265]


Сущность процесса электрохимической коррозии заключается в том, что атомы, находящиеся в узлах кристаллической решетки металла, при контакте с раствором электролита переходят в раствор в форме ионов, оставляя эквивалентное количество электронов в металле. Переход атомов металла в ионы и растворение их в жидком электролите определяется величиной нормального электродного потенциала. Он характеризует то напряжение электрического тока, которое надо приложить к границе раздела твердого металла с жидким электролитом, чтобы воспрепятствовать переходу иона металла в раствор. Чем отрицательнее нормальный электродный потенциал, тем более резко выражено стремление металла к растворению в электролитах. Так, свинец растворяется значительно медленнее, чем железо.  [c.174]

Обычными примесями технического никеля (до 1%) являются кобальт, железо, кремний и медь. Эти примеси не оказывают вредного влияния, так как образуют с никелем твердые растворы. Кислород и сера образуют с никелем химические соединения, которые выделяются в виде включений или в виде эвтектики, что ухудшает качество никеля. Углерод при содержании более 0,1—0,15% выделяется в виде графита. Нормальный электродный потенциал никеля равен —0,20 в, но практически он более положителен в связи с наличием в растворах кислорода. Никель склонен к пассивированию, но в меньшей степени, чем хром.  [c.141]

Нормальный электродный потенциал никеля равен - -0,26 в, но в растворах, содержащих кислород, электродные потенциалы никеля более положительны. Никель обладает большей, чем железо, и меньшей, чем хром, способностью пассивироваться.  [c.147]

Схема процесса электрохимической коррозии биметаллических пластин показана на рис. 14.1, а. В случае нарушения целостности цинкового слоя и заполнения лунки влагой образуется короткозамкнутая гальваническая пара цинк — железо, т. е. гальванический микроэлемент. Во внешней цепи микроэлемента потечет электрический ток от железного слоя к цинковому, так как нормальный электродный потенциал железа (—0,44 В) больше, чем у цинка (—0,76 В). Во внутренней цепи потечет ионный ток от цинкового  [c.308]

При возникновении гальванического микроэлемента в биметаллической пластине, состоящей из железа и меди (рис. 14.1, б), ток во внешней цепи потечет от медного слоя к поверхности железного, так как нормальный электродный потенциал железа (—0,44 В) меньше, чем у меди (-1-0,34 В). В этом случае катионы железа будут уходить в раствор, а катионы водорода — к поверхности медной пластины. Реакция вытеснения водорода пойдет по схеме  [c.309]

Нормальный электродный потенциал железа около —0,440 в, таким образом, равновесный потенциал Fe/O,01 н. Fe++будет — 0,440 — (2 X 0,030) =—0,500 в, предполагая, что активность может быть заменена величиной равной концентрации.  [c.263]


Защита в трещинах кадмиевого покрытия. Кадмиевые покрытия широко используются для стали не только для защиты ее от разрушения, но также для предотвращения серьезной контактной коррозии, если сталь находится в контакте со сплавом алюминия. Имеются некоторые колебания в использовании кадмиевого покрытия на высокопрочных сплавах, вследствие опасности водородной хрупкости. Этот вопрос обсужден на стр. 379, 380. При некоторых других обстоятельствах, однако, кадмиевое покрытие ведет себя удовлетворительно. Сталь с царапинами в кадмиевом покрытии обычно не подвергается коррозии. В соленой воде это иногда объясняется закупориванием их основным хлоридом или другими продуктами. Однако, защита в трещинах наблюдается и в деминерализованной воде (без солей), где объяснение, основанное на образовании основного хлорида, непригодно. Нормальный электродный потенциал кадмия менее отрицателен, чем потенциал железа, и, если элемент Сс1—Ре погружен в раствор, содержащий оба иона в эквивалентных количествах, то кадмий будет катодом, так что электрохимической защиты железа ожидать нельзя. Если, однако, такой элемент помещен в воду, не содержащую ни ионов железа, ни ионов кадмия, имеет место иной случай, а именно, становится существенной энергия активации. Два металла, по крайней мере, вблизи контакта будут иметь один и тот же потенциал по отношению к воде, и при этом общем потенциале, вероятно, кадмий будет переходить в раствор быстрее, так как его энергия активации относительно низка, в то время как железо с его высокой энергией активации будет переходить в раствор более медленно, чем в случае, если бы оно не было соединено с кадмием. Таким образом, контакт будет обеспечивать значительную катодную защиту по отношению к железу. Этот вопрос обсуждается ниже на стр. 592.  [c.586]

В почвах, в которых, отсутствуют соли кальция, магния и натрия, полная защита стали должна начаться при потенциале, когда реакция Ре точно балансируется реакцией Ре " Ре, а это зависит от концентрации ионов Ре + около трубопроводов в стационарных условиях. Если эта концентрация, например, 0,01 н, то следовало бы ожидать, что коррозия прекратится при потенциале —0,50 в по отношению к нормальному водородному электроду (поскольку нормальный электродный потенциал железа — 0,44 в), что находится в достаточно хорошем соответствии с общими эксплуатационными данными (стр. 264).  [c.749]

В ряде случаев коррозия стальных конструкций, соприкасающихся с водой, можно значительно ослабить или совсем прекратить, если применить электрохимическую защиту. Вопросам теории и практики электрохимической защиты, в частности катодной, посвящен ряд специальных руководств [111,22 111,23]. Для определения величины защитного потенциала стали в данных конкретных условиях необходимо знать скорость коррозии и величину стационарного электродного потенциала стали в этих же условиях [111,24]. В речной воде защитный потенциал для железа по нормальному водородному электроду при температуре 20° С составляет —0,65 0,70 в, при температуре 90° С он равен — 0,85 в. При этом  [c.106]

Рис. 280. Влияние углерода на изменение электродного потенциала железохромистых сплавов с 13 — 15% Сг (а) и хромоникелевых сталей типа 18-8 (б) в нормальном растворе сульфатного железа в присутствии перекиси водорода и воздуха Рис. 280. <a href="/info/116837">Влияние углерода</a> на изменение <a href="/info/32079">электродного потенциала</a> <a href="/info/117823">железохромистых сплавов</a> с 13 — 15% Сг (а) и <a href="/info/543692">хромоникелевых сталей типа</a> 18-8 (б) в <a href="/info/310041">нормальном растворе</a> сульфатного железа в присутствии перекиси водорода и воздуха
Во всех таких случаях явление коррозии связано не только с чисто химическими процессами, но сопровождается также электрическими явлениями, для которых большое значение имеет так называемый электродный потенциал металла. Если металл, например кусок железа, погрузить в воду, небольшая часть его атомов перейдет в раствор в виде положительных ионов (катодов), а сам металл обогатится электронами. Разность потенциалов, создающаяся на поверхности соприкосновения металла с жидкостью (электролитом) и характеризующая способность металла к растворению, называется электродным потенциалом. Величина его для данного металла зависит от состава электролита если погрузить металл в нормальный раствор его соли, получится нормальный электрический потенциал. Электродные потенциалы металлов определяются экспериментально, по отношению к водородному потенциалу, значение которого принято за нуль. В соответствии с этим все металлы по их нормальному потенциалу можно расположить примерно в следующем порядке  [c.195]


В самом деле в табл. 9.3 (см. стр. 257) приведены нормальные электродные потенциалы металлов и по значениям потенциалов видно, что марганец имеет меньший потенциал ( — 1,05в), чем железо ( — 0,44в).  [c.308]

Когда мы переходим к аномальным металлам типа железа, то их поляризуемость значительно больше. Меньшие значения тока обмена (сила тока, протекающая в обоих направлениях в условиях равновесия, когда суммарная сила тока равна нулю) дают основания считать, что в этом случае имеется существенное отличие от нормальных металлов. Отделение атомов таких металлов один от другого происходит менее легко, чем в случае нормальных металлов то же относится и к переходу ионов в процессе анодного растворения. Другими словами, энергия активации значительно выше и поляризационные кривые круче. Поэтому при работе с аномальными металлами имеется реальная возможность даже при умеренных плотностях тока достигнуть таких значений потенциала, при которых, согласно диаграмме Пурбэ, должна наступить пассивация. Это объясняет, почему аномальные металлы значительно легче пассивируются, чем нормальные металлы. Если судить по токам обмена, то в условиях, когда цинк или медь должны беспрепятственно переходить в раствор в виде ионов, подача ионов железа или никеля не обеспечивается и в силу необходимости должны возникнуть другие реакции, приводящие сначала к образованию окисла, а затем к выделению кислорода. Однако наличие хлоридов облегчает электродные реакции, и вероятность достижения потенциала пассивации понижается.  [c.740]

Электрохимические методы защиты металлов легче всего понять путем рассмотрения соответствующей диаграммы Пурбэ (для железа она представлена в полном и в упрощенном вариантах соответственно на фиг. 33 и 34). Железо не будет корродировать, когда его потенциал и величина pH окружающей среды попадают в область иммунитета, в которой металл термодинамически устойчив. Для достижения этих условий металл должен быть поляризован таким образом, чтобы его потенциал снизился от величины, соответствующей условиям беспрепятственной коррозии, до величины, несколько меньшей нормального электродного потенциала. На этом принципе основана катодная защита, рассматриваемая в разд. 3.2. Другим методом электрохимической защиты является обеспечение пр ыва-ния Железного электрода в области пассивного состояния, что требует поляризации для облагораживания потенциала (если pH среды составляет 2—9). В интервале значений pH = 9-4-12 железо либо находится в состоянии иммунитета, либо в пассивном состоянии, а при pH < 2 пассивность не достигается. Этот тип защиты, часто называемый анодной защитой, описан в разд. 3.3. В отличие от катодной защиты он неприменим во всем диапазоне значений pH, и действие защиты может прекратиться, если повреждена пассивная пленка, например, в присутствии хлоридных ионов. Катодная защита может осуществляться в любой среде, если только нет посторонних эффектов, например непосредственного химического разъедания металла. Здесь следует напомрить о различии между иммунитетом, т. е. областью, в которой коррозия (электрохимическое разъедание) не может происходить, и пассивностью, т. е. областью, в которой коррозия не происходит.  [c.128]

По сравнению с цинком алюминий имеет отрицательный нормальный электродный потенциал (—1,67 В против 0,76 В у цинка) и в гальванической паре с железом должен был бы разрушаться быстрее. Однако испытания показали, что алюминиевое покрытие при прочих равных условиях имеет в несколько раз более высокую коррозионную стойкость, чем цинковое. Это может быть объяснено склонностью алюминия к самопроизвольной пассивации в присутствии атмосферного или растворенного кислорода и других пассиваторов, что облагораживает стационарный потенциал первоначально активного алюминия [Л. 7]. Поэтому алитиро-ванная сталь более стойка против атмосферной коррозии и коррозии в растворах солей, чем оцинкованная (при атмосферных испытаниях длительность составляет соответственно 19 и 7 лет), а также устойчива в условиях тропиков. В [Л. 8] показано, что при скручивании алитированной проволоки диаметром 3,66 мм алюминиевое покрытие не повреждается оно устойчиво в воде, тогда как на оцинкованной проволоке появляется ржавчина. Прочность паяных и непаяных соединений проволоки с алюминиевым покрытием выше, чем прочность аналогичных соединений оцинкованной проволоки. Полевые испытания в условиях сильной коррозии показали, что срок службы алитированной проволоки вЗ раза больше оцинкованной.  [c.13]

Нормальный электродный потенциал олова равен +0,13 в. Олово применяется главным образом для лужения железа. Луженое железо, так называемая белая жесть, используется для изготовления консервной тары. Применение олова в пищевой промышленности всзмсжно благодаря стсйкости его в большинстве органических сред, а также в присутствии солей, не являющихся окислителями.  [c.151]

Цинк и кадмий применяются главным образом в качестве металлических покрытий, служащих для защиты железа от коррозии. Нормальный электродный потенциал цинка равен —0,76 в, а кадмия—0,40в. Поверхность этих металлов на воздухе и в воде покрывается плотпыми защитными пленками.  [c.155]

Никель. Нормальный электродный потенциал никеля — 0,25 В. Он обладает высокой коррозионной стойкостью во многих средах. В атмосфере, не содержащей оксид серы (IV), хлора, аммиака, металл хорошо устойчивдо500°С. В разбавленных минеральных кислотах (НС1, Нг504 до 70%) и в некоторых органических кислотах никель устойчив при обычных температурах, а в азотной кислоте разрушается. В растворах солей, не обладающих окислительными свойствами по отношению к никелю, его коррозия незначительна. Однако никель быстро разрушается в растворах хлоридов железа, меди и ртути, а также в растворах нитрата серебра, гипохлорита натрия и т. п.  [c.123]


Несколько иной механизм был предложен Кингсбэри [81]. Он предположил, что вначале на поверхности адсорбируется слой ионов хромата. Такой адсорбированный слой тормозит электродные реакции, лежащие в основе процесса коррозии металла, и действует как источник окисления в непосредственном контакте с поверхностью, а также в качестве экрана, мешающего другим ионам влиять на нормальный рост окисной пленки под этим слоем. Процесс окисления затем протекает под адсорбированным слоем с участием хромат-ионов и кислорода. Еще один механизм защиты железа хроматами был предложен Эвансом. По его мнению, ионы Сг04 притягиваются к анодным участкам поверхностн металла за счет градиента потенциала, причем их положительные концы оказываются наиболее удаленными от металла. При этом условии становится возможным объединение групп СгОг и двух соседних молекул воды с образованием хромовой кислоты  [c.105]

На катоде разряжаются не только катионы, но также анионы и нейтральные молекулы, способные восстанавливаться — в первую очередь наиболее сильные окислители. Окислительная способность при равных активностях (концентрациях) характеризуется величиной нормального окислительно-восстановительногс потенциала, который называют также электродным или электрохимическим (табл. 4). Например, в кислом растворе, содержащем медь, железо (И1) и ион нитрата, очередность катодного восстановления будет следующей  [c.28]


Коррозия химической аппаратуры и коррозионностойкие материалы (1950) -- [ c.19 ]



ПОИСК



Железо Потенциалы электродные

Потенциал нормальный

Электродные потенциалы, нормальные

Электродный потенциал



© 2025 Mash-xxl.info Реклама на сайте