Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Блуждающие токи, коррозия под действием

КОРРОЗИЯ ПОД ДЕЙСТВИЕМ БЛУЖДАЮЩИХ ТОКОВ  [c.209]

Потери металла, корродирующего на анодных участках под действием блуждающих токов, можно рассчитать по закону Фарадея. В табл. 11.1 представлены потери массы распространенных металлов в результате коррозии под действием блуждающих токов.  [c.212]

СПОСОБЫ СНИЖЕНИЯ КОРРОЗИИ ПОД ДЕЙСТВИЕМ БЛУЖДАЮЩИХ ТОКОВ  [c.214]

Изоляция стыков. Изолирование трубопровода, изображенного на рис. 11.1, одной или несколькими изоляционными прокладками снижает опасность разрушения трубы блуждающими токами. Такие прокладки часто используют для уменьшения коррозии под действием блуждающих токов. Их эс ективность снижается при высоких напряжениях, когда ток может обойти  [c.214]


К главе 11 Коррозия под действием блуждающих токов  [c.392]

Источниками блуждающих токов служат линии электрофицированных железных дорог, трамваев, метрополитена, линии передач постоянного тока, работающие по системе провод-земля , анодные заземлители установок катодной защиты не включенных в систему защиты рассматриваемого подземного металлического сооружения. Наиболее сильно коррозия под действием блуждающих токов проявляется вблизи электрофицированного рельсового транспорта. Процессы возникновения в земле блуждающих токов показаны на рис. 4.  [c.21]

Электродренажная защита - наиболее эффективная защита от коррозии под действием блуждающих токов. Основной принцип её состоит в устранении анодных зон на подземных сооружениях. Это достигается отводом дренажом блуждающих токов с участков анодных зон сооружения в рельсовую часть цепи, имеющую отрицательный или знакопеременный потенциал, или на отрицательную сборную шину отсасывающих линий тяговой подстанции. Потенциал сооружения смещается в отрицательную сторону, а анодные зоны, вызванные блуждающими токами, ликвидируются. При этом катодные зоны в местах входа блуждающих токов в сооружение сохраняются. Очевидно, что электрический дренаж работает только в том случае, когда разность потенциалов соору жение-элемент рельсовой сети положительна или искусственно становится положительной, т. е. потенциал ПСМ отрицательнее потенциала рельсовой сети.  [c.26]

Электрокоррозия представляет собой электрохимическую коррозию под действием внешнего источника постоянного тока, т. е. так называемых блуждающих токов, возникаюш,их вблизи электрифицированных железнодорожных линий, трамвайных путей, силовых шин и цехов электролиза, доков для ремонта судов, оснащенных электрооборудованием и электросварочными аппаратами, и пр. Источники блуждающих токов возникают при плохой изоляции рельсов от земли или силовых шин от пола, при наличии солевых электролитных мостов в электролизных цехах, образующихся при центральном подводе или отводе электролита, а также из-за плохого контакта между отдельными участками рельсового пути.  [c.32]

Коррозия под действием блуждающих токов  [c.804]

Электрокоррозия — электрохимическая коррозия под действием блуждающих токов, возникающих вследствие недостаточной изоляции рельсов электротранспорта от земли и утечки постоянного тока. Металлические магистрали (трубопроводы, кабели), находящиеся в почве, становятся частью параллельной электрической цепи, причем место входа тока становится катодной зоной (происходит подщелачивание почвы и выделение водорода), а участок выхода — анодной зоной (происходит усиленное растворение металла). Борьбу с этим видом коррозии проводят путем применения комплекса защитных мер осуществляют дренаж, т. е. отвод тока от анодной зоны трубопровода с помощью металлического проводника обратно в рельс применяют изоляцию опасных мест металлоконструкций увеличивают сопротивление на стыках.  [c.38]


Электрокоррозия — электрохимическая коррозия под действием блуждающих токов, возникающих вследствие недостаточной изоляции рельс электротранспорта от земли и утечки постоянного тока. Металлические магистрали (трубопроводы, кабели), находящиеся в почве, становятся частью параллельной электрической цепи, причем. место входа тока становится катодной зоной (происходит подщелачивание почвы и выделение водорода), а участок выхода — анодной зоной (происходит усиленное растворение металла).  [c.32]

Систематическое изучение электрокоррозии железобетона проводится в НИИЖБе [38, 82]. Эти работы касаются, главным образом, коррозии под действием блуждающих токов в электролизных цехах и в других промышленных сооружениях.  [c.56]

Блуждающими токами называются токи, ответвляющиеся от своего пути. Попадая в металлические конструкции, расположенные в грунте, они вызывают коррозию. Источником возникновения блуждающих токов в почве служат рельсовые пути трамвайных и электрических железных дорог, в которых рельсы выполняют роль обратного провода для тока, электросварочные аппараты, работающие от постоянного тока, установки катодной защиты, электролизеры, установки для гальванопокрытий. Коррозия под действием блуждающих токов особенно опасна в тех случаях, когда этот ток постоянный. Принципиальная схема возникновения блуждающих токов и протекающей при этом коррозии приведена на рис. 54.  [c.102]

Рис. 11.1. Коррозия подземной трубы под действием блуждающих токов 210 Рис. 11.1. <a href="/info/39726">Коррозия подземной</a> трубы под действием блуждающих токов 210
Рис. 11.2. Коррозия корпуса судна под действием блуждающих токов, наведенных сварочным генератором Рис. 11.2. Коррозия корпуса судна под действием блуждающих токов, наведенных сварочным генератором
Под коррозией подразумевается постепенное разрушение металла с поверхности, вызываемое электрохимическими или химическими процессами, происходящими под действием окружающей среды. Тепловые сети подвержены в основном почвенной коррозии и иногда поражению блуждающими токами. Под почвенной коррозией понимают коррозию металлических сооружений, укладываемых в грунт при полном или частичном соприкосновении с ним. Главной причиной коррозии является влага, содержащая в себе в растворенном виде кислоты, соли, щелочи, а также некоторые газы, воздействие которых на металл вызывает процесс коррозии. Коррозийные вещества имеются в почве, состоящей из различных минеральных веществ, а в городах часто с присутствием гниющих органических веществ. Кроме того, коррозийные вещества могут попасть в канал тепловой сети вместе с фекальными водами при засорах в канализационной сети, из выгребных ям, с верховыми или сточными водами, с грунтовыми, а также с другими случайными водами. Наружная коррозия теплопроводов вызывается некоторыми (ранее применявшимися) видами теплоизоляционных материалов в присутствии влаги. 158  [c.158]

Электрокоррозия, возникающая под действием внешней разности потенциалов, сравнительно редко встречается в машиностроении. Особое значение этот вид коррозии имеет в строительных конструкциях, когда нарушение изоляции создает блуждающие токи и коррозии могут подвергаться закладные детали фундаментов и опор из железобетона, а также трубопроводы, уложенные в грунт.  [c.32]

Электрохимическая коррозия встречается чаще других видов коррозионного разрушения и наиболее опасна для металлов. В атмосфере, когда на поверхности металлов конденсируется влага, коррозий подвергаются металлические конструкции, различное оборудование,, машины, механизмы, средства транспорта. В почве происходит коррозионное разрушение стальных трубопроводов, резервуаров. В морской и речной воде подвергаются ржавлению металлическая обшивка судов, гидросооружения, сваи. В жидких электролитах (растворы кислот, солей и щелочей) корродируют емкости, аппараты и другое оборудование многих химических производств. Под действием внешнего электрического тока (блуждающие токи) могут разрушаться подземные металлические сооружения, стенки электролитических ванн. Биологическая коррозия (биокоррозия) металла может быть вызвана жизнедеятельностью некоторых микроорганизмов.  [c.14]


Битумбетоны 273 Битуминолн 269 Битумы, испытания 181 Благородные металлы, коррозия 155 Блуждающие токи, коррозия под их действием 65 сл.  [c.284]

В практике чаще всего встречаются с примерами разрушений металлических конструкций вследствие электрохимической коррозии. Этот вид коррозии возникает в растворах электролитов, причем ему сопутствуют протекающие на поверхности металла электрохимические процессы окислительный — растворение металла — и восстановительный — электрохимическое восстановление компонентов среды. На скорость электрохимической коррозии влияют особенности как самого металла (вид, структура, неоднородности, наличие пленок и покрытий), так и электролитической среды (состав, концентрация, температура, кислотность и т. д.). Влияют также условия эксйлуатации металлической конструкции. Видами электрохимической коррозии являются атмосферная, подземная, морская, биологическая, коррозия под действием блуждающих токов и др.  [c.12]

Коррозия под действием переменного тока в значительной степени зависит от его частоты, она резко возрастает с понижением частоты (рис. 17.14, а и б). Зависимость коррозионных потерь от частоты и плотности переменного тока прямоугольной формы, представленная на рис. 17.14, в, показывает, что ток частотой 50 гц при плотности менее 400 ма/дм или частотой 16 /з гц при плотности 230 ма1дм не опасен [65]. Такие токи вызывают повреждения в пределах, допустимых при коррозии блуждающими токами (0,75 ма/дм -) [66]. Так как плотность блуждающих токов редко превышает 10 ма/дм , то при переменном токе обычной частоты почти нет опасности коррозии незащищенных конструкций, а при изолированных трубопроводах можно ожидать коррозии только в том случае, если в местах дефектной изоляции плотность тока превыщает допустимую норму [65].  [c.807]

Химический характер продуктов коррозии. Соединения, получающиеся при коррозии блуждающими токами, в некотором отношении отличны от продуктов естественной коррозии. Если катодный продукт (обычно щелочь) образуется тут Же рядом, он превратит образованную на аноде свинцовую соль в карбонаты, основные карбонаты или окиси, и эти соединения обычно находят в слое, имеющемся на нормально прокарродировавшей свинцовой оболочке. Бели же атод удален от анода, свинцовые соли останутся непревращенными, и тогда на прокорродировавших участках свинцовой оболочки кабеля, пострадавшей от блуждающих токов, обычно находят хлористый, основной хлористый или сернокислый свинец (иногда также сернистый и азотнокислый свинец). Перекись свинца, для образования которой требуется, как уже было указано, э. д. с. более высокая, чем обычно бывает при естественной коррозии, иногда также встречается в случае коррозии под действием блуждающих токов Наличие перекиси свинца приводят иногда как доказательство присутствия блуждающих токов, но это не совсем верно  [c.40]

Это условие обязано соблюдаться независимо от разловид- ости коррозии — от атмосферной до коррозии под действием блуждающих токов. В каждом из случаев мы будем иметь дело с частным проявлением неравновесных электродных процессов можем объяснить механизм протекания реакций с позиций закономерностей электрохимической кинетики. Поэтому саму теорию коррозии удобно называть кинетической или теорией 4>румкина — Вагнера — Шултина, по имени ученых, разработавших основные ее принципы. Первое знакомство с этой теорией происходит при изучен1и1 основ теоретической электрохимии.  [c.54]

Электрокоррозия — это электрохимическая коррозия под действием внешнего источника постоянного тока. Наиболее распространена коррозия как результат действия блуждающих токов. Источником блуждающих токов являются железнодорожные пути электропроездов, рельсовые пути трамвайных линий, силовые шины в электролизных цехах. Параллельные цепи блуждающих токов возникают пз-за недостаточной изоляции рельсов от земли или силовых шин от пола при наличии жидкостных мостиков, создаваемых в электролизных цехах маги-  [c.76]

Блуждающими токами называют токи утечки из электрических цепей или любые токи, попадающие в землю от внешних источников. Попадая в металлические конструкции, они вызывают коррозию в местах выхода из металла в почву или воду. Обычно природные токи в земле не опасны в коррозионном отношении — они слишком малы и действуют кратковременно. Переменный ток вызывает меньшие разрушения, чем постоянный, а токи высокой частоты обусловливают большие разрушения, чем токи низкой частоты. По данным Джонса [1], возрастание коррозии углеродистой стали в 0,1 н. Na l, вызванное токами частотой 60 Гц и плотностью 300 А/м, незначительно, если раствор аэрирован, и в несколько раз выше (хотя и относительно низкое) в деаэрированном растворе. Возможно, в аэрированном растворе скорости обратимых или частично обратимых анодной и катодной реакций симметричны по отношению к наложенному переменному потенциалу, а в деаэрированном они несимметричны, главным образом вследствие реакции выделения водорода. Подсчитано, что коррозия стали, свинца или меди в распространенных коррозионных средах под действием переменного тока частотой 60 Гц не превышает 1 % от разрушений, вызванных постоянным током той же силы [2, 3].  [c.209]

Незадолго до начала текущего столетия из США поступили первые тревожные сообщения о разрушающем действии блуждающих токов. В Германии в связи с развитием снабжения бытовых потребителей постоянным током и с созданием сети железных дорог с тягой на постоянном токе тоже появилась новая опасность коррозии подземных трубопроводов— электролиз, под действием блуждающих токов. В 1879 г. на Берлинской промышленной выставке Вернер фон Сименс продемонстрировал первую в мире электрическую железную дорогу с тягой на постоянном токе. Спустя два года в Берлин-Лихтерфельде началась эксплуатация первого электрического трамвая, причем один рельс был положительным, а другой отрицательным, и рабочее напряжение составляло 140 В. На участке от Вестэнда до Шпандауэр Бокк Сименс оборудовал в 1882 г. первую экспериментальную трамвайную линиЮ с верхним контактным проводом. Участок вначале был оборудован двумя верхними контактными проводами, так что никакие блуждающие токи не могли стекать в грунт [54]. К сожалению, впоследствии эту схему не удалось сохранить.  [c.39]


В гидроокисях щелочных металлов образуются растворимые плюмбиты, в гидроокиси кальция конечным продуктом коррозии является окись свинца. Наряду с желтой РЬО встречается также рубиновокрасная (рис. 4.16), которую не следует смешивать с суриком. РЬОг образуется только при анодной поляризации, например под действием блуждающих токов, и наблюдается при поврежденной битумной изоляции на наружной поверхности труб и кабелей [30]. При реакции с высшими органическими кислотами получаются основные соединения типа РЬО ЗРЬКг (R — кислотный остаток масляной, стеариновой, пальмитиновой кислот), при реакции с лауриновой кислотой в присутствии окислителей — лаураты [13]. В крекинг-бензинах в качестве продуктов коррозии встречаются преимущественно карбонаты [36].  [c.319]

При погружении в электролит двух разнородных металлов, обладающих различными электродными потенциалами, в электролит будут переходить ионы металла г более низким электродным потенциалом. Если оба металла привести в контакт (при помощи проводника, например), то возникнет гальванический элемент, в котором избыточные электроны от металла с более низким электродным потенциалом (анода) будут перемещаться к металлу с более высоким электродным потенциалом (катоду). Цепь замкнется через электролит, где заряды будут передаваться ионами электролита. Таким образом, электрическое равновесие на аноде будет непрерывно нарушаться, и анод будет разрушаться, т. е. корродировать. Второй электрод (катод) разрушению не подвергается. На корродирующей поверхности металла имеются различные по своим свойствам участки, которые при соприкосновении с электролитохм выполняют роли анодов или катодов. Большей частью поверхность металла представляет собой многоэлектродный гальванический элемент, В зависимости от размеров анодных или катодных участков они образуют макрогальванические или микрогальва-нические элементы. Причины образования электрохимической неоднородности могут быть самые различные макро- и микровключения в сплаве, наличие границ зерен поры в окисной пленке, неравномерная деформация и др. По условиям протекания коррозия разделяется на следующие виды 1) газовая коррозия 2) коррозия в неэлектролитах (например, стали в бензине) 3) атмосферная коррозия 4) коррозия в электролитах (подразделяется в зависимости от характера коррозионной среды на кислотную, щелочную, солевую и т. п.) 5) грунтовая коррозия (например, ржавление трубопроводов) 6) структурная коррозия, обусловливается различными включениями в металле 7) электрокоррозия (возникает под действием блуждающих токов) 8) контактная коррозия, возникает при контакте в электролите металлов с разными электродными потенциалами 9) щелевая коррозия (возникает в узких щелях, например в резьбовых соединениях)  [c.152]

Для анализа влияния блуждающих токов на эстакаду положим в неравенстве (130) f = УИтах и [/I = Мдоп, где Мтах — наибольший из возможных изгибающий момент в свае, возникающий под действием внешних сил, т. е. под действием трубопровода, проложенного на сваях Л1доп — допустимый изгибающий момент в свае определенной конструкции в конце срока службы Т [25]. В арматурном каркасе любых железобетонных конструкций не предусматривается запасов на коррозию, но запас по прочности  [c.193]

Разрушение металла подземного металлического сооружения происходит в анодных зонах, в которых ток выходит из металла в почву. Анодные зоны образуются при почвенной коррозии, т. е. под действием гальваиичесних пар или при выходе блуждающих токов из подземного сооружения. Если же на всей поверхности металлического сооружения создать отрицательный потенциал по отношению к окружающей его почве, то разрушение металла прекратится. На этом принципе основана катодная защита подземных металлических сооружений и, в частности, силовых кабелей.  [c.118]


Смотреть страницы где упоминается термин Блуждающие токи, коррозия под действием : [c.16]    [c.148]    [c.180]    [c.322]    [c.66]    [c.37]    [c.36]    [c.11]    [c.7]    [c.173]    [c.33]    [c.82]    [c.85]   
Коррозия химической аппаратуры и коррозионностойкие материалы (1950) -- [ c.65 ]



ПОИСК



Блуждающие токи

Коррозия блуждающим током

Ток блуждающий



© 2025 Mash-xxl.info Реклама на сайте