Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Материалы для лазерной техники

Сравнение свойств кристаллов и стекол показывает, что эти материалы дополняют друг друга и, следовательно, одинаково важны для лазерной техники.  [c.679]

Основой для написания книги послужили материалы исследований, выполненных авторами в лаборатории лазерной технологии кафедры инструментального производства Киевского политехнического института. Кроме того, в ней использованы результаты работ отечественных и зарубежных исследователей в области лазерной техники и технологии, опубликованные в течение последних лет. Авторы приносят благодарность сотрудникам лаборатории лазерной технологии КП И и других организаций, принимавших участие в выполнении ряда исследований.  [c.6]


По-новому могут решаться задачи земледельческой механики с использованием лазерной техники для резания и других видов обработки сельскохозяйственных материалов и продуктов.  [c.153]

В возрастающем общем объеме машиностроительной продукции все большее место занимают изделия, изготовленные из специальных материалов, которые, как правило, трудно поддаются обработке традиционными методами. Эти методы, требующие громоздкого и энергоемкого оборудования, оказываются неэффективными еще и потому, что в общей стоимости изделия именно стоимость материала составляет основную долю, т. е. целесообразно применять способы обработки с наиболее экономичным использованием дорогостоящих материалов. В этих целях инженеры и конструкторы разрабатывают ловые технологические процессы, основывающиеся на последних достижениях науки. В первую очередь речь идет о технологическом применении лазерной техники. Сфокусированный луч лазера создает локализованное Б малой области сверхвысокое давление и температуру, достаточную не только для плавления обрабатываемого материала но и для его испарения. Существенное преимущество лазерной технологии — относительная простота управления траекторией и интенсивностью луча, его доставки в нужное место с помощью системы зеркал.  [c.11]

Для конструирования и изготовления лазерной техники и разработки новых технологических процессов обработки материалов лазерным излучением необходимы квалифицированные специалисты. В связи с этим для подготовки студентов и переподготовки инженерных кадров организована новая учебная специальность Оборудование и технология лазерной обработки .  [c.5]

Возможность организации серийного выпуска изделий из композиционных материалов предопределяется самым тщательным входным и пооперационным контролем, а гарантия работоспособности изделия может быть дана лишь на основании контроля качества готовой продукции. Сравнительная дороговизна некоторых композиционных материалов, особенно на основе углеродных, борных и арамидных волокон, вызывает необходимость разработки и внедрения новых методов неразрушающего контроля всех выпускаемых изделий. Важность использования для композитов метода конечных элементов оказывается бесспорной. В этой связи особое значение приобретает проблема стандартизации методов контроля и оценок по всем операциям технологического процесса. Для не-разрушающего контроля композиционных материалов и изделий из них все шире используются метода сканирующей электронной микроскопии, жидкокристаллического тепловидения , рентгенографии, лазерной техники и т. п.  [c.16]

Предлагаемая книга посвящена вопросам разработки источников питания различного типа лазеров промышленного назначения. Сведения о принципах построения и об основных особенностях источников питания лазеров можно найти в ряде работ по лазерной технике 1—3]. Имеется литература, которую можно использовать при разработке отдельных функциональных узлов источников питания. Однако основная информация об электрических схемах, характеристиках и параметрах источников питания лазеров содержится в многочисленных отечественных и зарубежных периодических изданиях, частично отражена в рекламных материалах или приведена в сопроводительной технической документации на выпускаемые промышленностью изделия. Это обстоятельство создает немало трудностей и для разработчиков таких источников питания и для специалистов, занятых эксплуатацией лазерных установок.  [c.3]


Для создания лазеров потребовались новые, ранее не применявшиеся материалы, системы охлаждения и электропитания, принципиально новые оптические устройства для измерения параметров излучения. Лазерная техника стимулировала разработку новых радиоэлектронных устройств и методов измерений импульсных сигналов наносекундной длительности. Требовалась разработка высокочувствительных быстродействующих фотодетекторов как в видимом, так и в инфракрасном диапазонах длин волн. Высокие потенциальные точности измерения координат цели, свойственные лазерным локаторам, определили необходимость создания сверхточных оптико-механических узлов для наведения лазерного излучения. Одновременно с развитием элементной базы совершенствовались и отрабатывались схемные решения лазерных локаторов, проверялись на практике основные положения теории.  [c.6]

Современный этап развития лазерной техники характеризуется непрерывным увеличением промышленного выпуска лазеров и высокими темпами внедрения лазеров в народное хозяйство. Применение лазеров в машиностроении, в производстве приборов и элементов электронной техники способствует повышению надежности, качества и увеличению выхода годных изделий, улучшает условия труда и уменьшает трудоемкость производства. Среди лазерных технологических установок для сварки, резки, закалки и отжига материалов, сверления отверстий и других операций ведущее место в настоящее время принадлежит установкам с твердотельными лазерами. Твердотельные лазеры также широко используются для исследований и испытаний различных материалов, получения высокотемпературной плазмы и мягкого рентгеновского излучения. Опыт разработок и эксплуатации приборов показывает, что достижение высоких и стабильных во времени параметров лазеров и лазерного излучения (КПД, энергии и мощности излучения, расходимости, спектрального состава) не может быть обеспечено без учета в конструкции лазеров и при управлении режимами их работы различных эффектов, обусловленных нагревом элементов лазерного излучателя. Только при правильном выборе теплового режима элементов излучателя лазера, при устранении или частичной компенсации негативных проявлений термооптических эффектов можно обеспечить стабильность параметров лазеров и эффективное управление их характеристиками.  [c.3]

Первая отечественная автоматическая лазерная технологическая установка (АЛТУ) Каравелла на основе ЛПМ Карелия была создана в НПП Исток в 1987 г. для прецизионной (микро)обработки тонколистовых материалов изделий электронной техники [218].  [c.244]

В основу настоящей книги положены результаты исследований, проведенных на кафедре физики Московского энергетического института. Книга рассчитана на научных работников и инженеров, специализирующихся в области разработки и применения различного рода лазерных систем. Поэтому в книге основное внимание уделено прикладным аспектам теории оптических резонаторов. Широко используются приближенные методы исследования с целью дать материалы для расчета и проектирования реальных устройств. Конечно, в рамках ограниченного объема невозможно решить все вопросы техники оптических резонаторов необходим рациональный отбор материала. Содержание книги ограничено стационарным режимом. Не включены также вопросы селекции собственных волн и частотной стабильности в связи с существованием монографий [4, 5]. Кроме того, из соображений методического единства круг затрагиваемых вопросов ограничен рамками линейной оптики. Последовательность изложения соответствует принципу постепенного углубления материала, что должно сделать книгу удобной для использования также студентами вузов.  [c.4]

Основная задача лазерного материаловедения состоит в создании оптически стойких, чистых, хорошо обрабатываемых материалов для оптических элементов лазерных устройств и систем, в которых порог оптического разрушения сделан возможно более высоким. Создание таких материалов — важная и трудная проблема современной лазерной техники.  [c.115]

Настоящая книга состоит из четырех глав, в которых рассматриваются некоторые перспективные для производства изделий электронной техники полупроводниковые, магнитные, диэлектрические и лазерные материалы. В каждой главе описаны физические процессы, происходящие в конкретных материалах, свойства, основные методы получения и области применения. Особое внимание уделено зависимости свойств материалов от их состава, структуры и технологии получения.  [c.3]


Известно, что возможности и технические характеристики создаваемой лазерной установки определяются решаемой задачей и состоянием техники на данный момент времени. Наличие большого количества различных типов лазеров и имеюш,егося опыта позволяет создавать установки для решения самых различных задач в областях технологии, связи, навигации, строительства, медицины, экспериментального исследования и т. д. Как правило, создание лазерной установки происходит параллельно с разработкой конструкции лазера. Первые технологические установки типа СУ-1 и К-3 были выпущены в СССР еш,е в 1964 г. и в течение многих лет в качестве эксперимента эксплуатировались в производственных условиях, выполняя операции сверления отверстий, сварки материалов, подгонки номиналов сопротивления и др.  [c.304]

С 1960 г. началось бурное развитие техники твердотельных лазеров, в наши дни превратившихся из экстремального научного достижения, материализовавшего прогнозы Альберта Эйнштейна 1916 г. и В. А. Фабриканта 1949 г., в одно из наиболее широко применяемых средств научных исследований и промышленной технологии. Не рассматривая вопросов собственно физики лазеров и лазерной технологии, которым посвящено уже практически необозримое количество монографий, журнальных статей и материалов фирм, остановимся на краткой характеристике основных активных твердотельных диэлектрических рабочих сред, используемых в лазерах. Для генерации когерентного излучения в настоящее время применяются диэлектрические монокристаллы, легированные примесями активируемых ионов, и стехиометрические поликристал-лические материалы этих же типов, неорганические и органические (полимерные) стекла и пленки.  [c.229]

С появлением мощных лазерных источников света и развитием голографической техники эти интерференционные диспергирующие устройства начали применяться для спектрального приборостроения. Особенно это относится к спектральным приборам, построенным на основе вогнутых решеток. Главными проблемами при изготовлении голографических решеток являются создание прецизионной оптической аппаратуры для записи и контроля решеток и подбор подходящих светочувствительных материалов, обладающих высоким разрешением.  [c.314]

До сих пор мы пренебрегали нерезонансными потерями энергии в активной среде. В реальных условиях они всегда существуют. Во-первых, размеры пучка всегда ограничены, а следовательно, пучок расширяется в поперечном направлении (относительно направления распространения) из-за дифракции и выходит (теряется) за пределы системы, ограниченной размерами активной среды Угло-вое расширение пучка с поперечным размером 2ш составляет 0d X/2w. На длине L радиус пучка увеличится на 0dL. Все лучи, попавшие в кольцо с этой толщиной и диаметром 2ш, будут уходить (теряться) из активной среды, поперечные размеры которой также 2ш. Относительная величина этих потерь составит X/w и будет максимальна в ИК-диапазоне спектра. При характерных для лазерной техники ш 1 см и Л = 1...10 мкм эти потери составят (0,1...1) 10 см т. е. на длине 1 м из-за дифракции будет теряться 1...10% излучения. Во-вторых, как правило, в усилителях присутствуют оптические элементы (окна, зеркала), на которых также теряется часть падающего на них излучения со I. Эти потери зависят от материалов, качества их обработки и обычно составляют >0,1...1% на каждом оптическом элементе. Наконец, реальная активная среда не является идеально однородной и поэтому пучок света может претерпевать на них рассеяние (рефракцию), также приводящее в конечном счете к потерям. Не вдаваясь в конкретный механизм потерь, будем характеризовать их в дальнейшем общим коэффициентом нерезонансных потерь Ро[см" ] (потери, пересчитанные на единицу длины).  [c.36]

Наиб, распространённым активатором материалов для Т. л. являются ионы Nd (см. Неодимовый лазер). Широкое применение в науке и технике находят лазеры на основе силикатньЕх и фосфатных стёкол с неодимом (см. Лазерные стёкла), генерирующие излучения в области  [c.49]

Синтетический, окрашенный в красный цвет прозрачный монокрнсталли-ческий оксид алюминия (легированный оксидом хрома в количестве 2—3 %) — рубин применяют для изготовления часовых камней, некоторых деталей точных приборов и т. п. Монокристал-лические стержни рубина применяют в лазерной технике. Возрос интерес к стабилизированному оксиду циркония, являющемуся перспективным материалом для изготовления деталей, предназначенных для работы при высоких температурах, в частности в адиабатных двигателях (плотность 5,6 т/м ,  [c.144]

Монография представляет первую в мировой литературе попытку аналитического рассмотрения современного состояния разработок н применений (включая перспективные) диэлектрических материалов в электронной технике. В ней описаны особые свойства диэлектриков линейные и нелинейные диэлектрические, пьезо-, пиро-, сегнетоэлектрические, сегнетоэластические, электро-, аку-СТО-, нелинейно-оптические, лазерно-генерационные. Рассмотрены корреляции между мерой выраженности конкретных свойств и обусловливающими их особенностями структуры. Приведены характеристики основных типов используемых и предложенных устройств, включая интегральные и полифункциональные. Предложена система критериев качества рассматриваемых материалов применительно к видам их применений. Подробно протабулированы характеристики используемых и вновь предлагаемых материалов, а также типовых ИЭТ и ИФЭ с функциональными элементами из диэлектрических материалов с особыми свойствами. Проведен анализ перспектив развития отдельных направлений, сформулированы прогнозные перечни новых материалов. Книга может быть использована как современное справочное руководство при выборе материала для решения ряда прикладных задач.  [c.2]

Активными — управляемыми — диэлектриками являются сегнетоэлектрики, пьезоэлектрики, пироэлектрики, электролюминофоры, материалы для излучателей и затворов в лазерной технике, жидкие кристаллы, электреты и др.  [c.4]

В цитированном обзоре М. Ф. Стельмаха и его коллег особо подчеркивается научная значимость и экономическая эффективность существующих методов лазерной обработки тонкопленочных материалов. Для развития современной микроэлектронной техники они имеют первостепенное значение. Мы не будем останавливаться подробно на этих сугубо специальных технологических проблемах, трудно доступных неподготовленному читателю, и только перечислим некоторые из них подгонка пленочных резисторов гибридных интегральных схем, подгонка частоты вакуумированных кварцевых резонаторов, нарезка и подгонка в номиналах прёцйзибнных металлопленочных резисторов дискретного тйПа, ретущь фотошаблонов, получение тонкопленочных рисунков и структур. В большинстве этих случаев используется способность лазерного луча испарять в необходимых участках тонкопленочные покрытия на прозрачных материалах.  [c.51]


Квантовая радиоэлектроника развилась очень быстро. От формулировки физической возможности осуществления вынужденного излучения до создания оптических квантовых генераторов прошло около 10 лет. История знает немного случаев такого стремительного развития целой области науки и техники. Практическое использование ОКГ началось, по сути дела, одновременно с их созданием. В кратчайшие сроки было налан ено промышленное производство и развернуты работы по исследованию их применений для самых различных целей. Наша отечественная промышленность выпускает лазеры разных типов и разного назначения. В качестве примеров первых промышленных типов ОКГ укажем на газовые лазеры непрерывного действия (ОКГ-11 и ОКГ-12), предназначенные для применения в физике, химии, медицине, биологии и т. д. Мощность излучения лазера ОКГ-12 достигает 35 мет. Установка на рубине для сварки и пробивания отверстий с помощью лазерного луча К-ЗМ позволяет регулировать энергию в пределах 0,001—1 дж и обеспечивает пробивание материалов до 1 мм толщиной с диаметром проплавляемой зоны 0,001—0,5 мм.  [c.414]

Из числа материалов, практически используемых в промышленном производстве электрооптических приборов управления лазерными пучками (см. 7.4, 7.5), исторически наиболее широкое применение нашли кристаллы KDP и DKDP. Освоенность технологии и высокое оптическое совершенство в сочетании с размерами, обеспечивающ,ими изготовление элементов любой требуемой апертуры, обусловили сохранение этими кристаллами своего положения, несмотря на необходимость герметизации электрооптических элементов. Выращиваемые из расплава нерастворимые кристаллы ниобата и танталата лития также успешно используются в электрооптической технике. В этом случае ограничивающ,им обстоятельством является индуцируемое светом изменение рефракции. Для остальных кристаллов, приведенных в табл. 7.1, не преодолены до конца трудности технологического характера. Более подробно характеристики конкретных электрооптических материалов будут рассмотрены при описании соответствующих объемных и интегральных приборов.  [c.201]

Удивительные особенности лазерного излучения — огромная интенсивность света, исключительно высокая монохроматичность и направленность излучения — открыли поистине безграничные возможности для практических применений лазеров во многих отраслях науки и техники. Новые технологические процессы прецизионной обработки материалов, создание оптических линий связи, точное определение расстояний, создание оптоэлектронных систем для обработки информации и вычислительной техники, диагностика плазмы, нагрев плазмы до термоядерных температур, хирургические операции и др. — вот далеко не полный перечень задач, которые решаются с помопхью лазеров.  [c.5]

Двухканальный ЛПМ Карелия стал основой для создания лабораторной автоматической лазерной технологической установки (АЛТУ) Каравелла (1986-1987 гг.), предназначенной для прецизионной обработки материалов, используемых в производстве изделий электронной техники. На АЛТУ Каравелла продемонстрирована возможность прецизионной резки и сверления большой группы металлических, полупроводниковых и диэлектрических материалов, многие из которых до этого момента практически не были включены в сферу лазерной микрообработки. Показано, что Каравелла позволяет на порядок сократить сроки изготовления малых и средних партий изделий электронной техники по сравнению с традиционными методами, включая и электроискровую обработку.  [c.24]

Монокристаллические материалы используются обычно в тех областях техники, где необходимы не только уникальные значения свойств, которые может обеспечить лишь малодефектная структура монокристалла, но и уникальная однородность этих значений по объему изделия с учетом анизотропии. Основную массу монокристаллов различного химического состава потребляют микроэлектроника, оптоэлектроника, лазерная и атомная техника. Подавляющее больщинство этих монокристаллов относится к полупроводниковым и диэлектрическим материалам. Монокристаллические металлы с высокой степенью чистоты до последнего времени практически не использовались в технике. Однако в настоящее время высокие технологии, например, получения металлических пленок, требуют, чтобы мишени для установок напыления были монокристаллически и. В противном случае скорость напыления резко меняется при испарении материала мишени на границе зерен, и качество получаемой пленки снижается.  [c.305]

Имрульсы лазерного излучения находят широкое применение в разнообразных технологических процессах, связанных с обработкой материалов, в световой локации и связи, измерительной технике, системах обработки информации, различных физических, химических и биологических исследованиях, медицине и т. д. Заметим, что уменьшение длительности лазерных импульсов и увеличение крутизны их фронта необходимо, например, для высокотемпературного нагрева плазмы (проблема управляемого термоядерного синтеза) увеличение крутизны спада коротких световых импульсов требуется для исследования релаксационных процессов, а также для решения задач современной измерительной техники. Для ряда технологических задач, в голографии, для накачки параметрических генераторов света может потребоваться, напротив, относительное увеличение длительности лазерных импульсов.  [c.266]

Эта ситуация быстро меняется по мере того, как почти ешедневно сообщается о новых применениях лазеров в различных областях науки, техники и медицины. Вся эта деятельность вызывает растущую потребность в лазерах с большей мощностью, эффективностью и стабильностью. Используемые в настоящее время лазеры имеют в качестве активной среды или газы, или твердые тела, и главная часть усилий по преодолению недостатков существующих лазерных систем посвящалась поискам новых газов и твердых тел для использования в качестве лазерных материалов. Эта статья полностью посвящена другой проблеме использованию жидкости в качестве активной среды лазера.  [c.43]


Смотреть страницы где упоминается термин Материалы для лазерной техники : [c.65]    [c.393]    [c.2]    [c.490]    [c.244]    [c.6]    [c.521]    [c.9]    [c.165]    [c.302]   
Химия и радиоматериалы (1970) -- [ c.65 ]



ПОИСК



Лазерное (-ая, -ый)

Лазерные материалы

Материалы для лазерной техники магнитные

Материалы для лазерной техники полупроводниковые

Материалы для лазерной техники электроизоляционные



© 2025 Mash-xxl.info Реклама на сайте